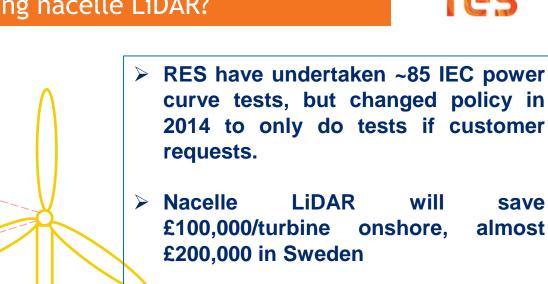


Renewable Energy Systems Simon Feeney

Nacelle LiDAR Activities in RES

14th November 2016 UniTTe Workshop – DTU Risø Campus



Why are RES interested in using nacelle LiDAR?

 $\boldsymbol{\omega}$

00

 $\boldsymbol{\infty}$

Quicker, more flexible, \geq more information - Shear, inflow, Yaw error

res

save

almost

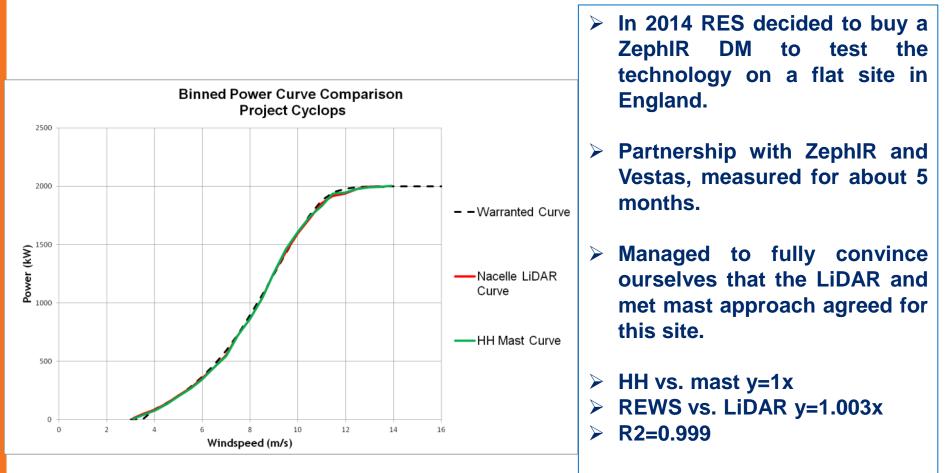
will

- > More representative test of actual site conditions – difficult to see any real benefit in contractual warranty test for RES sites.
- **Relative Power** curves verv powerful tool.
- Better for complex terrain?

Project Cyclops

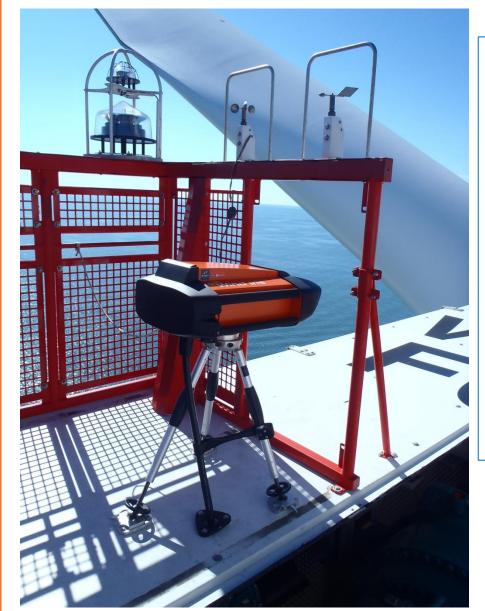
- In 2014 RES decided to buy a ZephIR DM to test the technology on a flat site in England.
- Partnership with ZephIR and Vestas, measured for about 5 months.
- Managed to fully convince ourselves that the LiDAR and met mast approach agreed for this site.
- > HH vs. mast y=1x
- REWS vs. LiDAR y=1.003x
- ≻ R2=0.999
- Passed the first test!

Project Cyclops



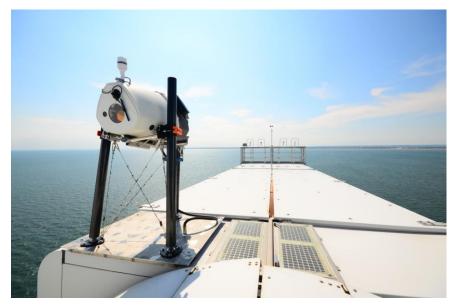
- In 2014 RES decided to buy a ZephIR DM to test the technology on a flat site in England.
- Partnership with ZephIR and Vestas, measured for about 5 months.
- Managed to fully convince ourselves that the LiDAR and met mast approach agreed for this site.
- > HH vs. mast y=1x
- REWS vs. LiDAR y=1.003x
- ≻ R2=0.999
- Passed the first test!

Project Cyclops



Passed the first test!

RES Projects


- However nacelle LiDAR not really taken off on RES projects – partly due to change in RES business approach to ownership and partly due to auction systems leading to removal of any non-essential costs.
- Also RES have never really been worried about performance on flat sites.
- More uptake on commercial projects where installation experience and technical capability are desirable

Some example projects...

Commercial Nacelle LiDAR Projects - Blade Erosion

Example Edge Erosion Before Repair

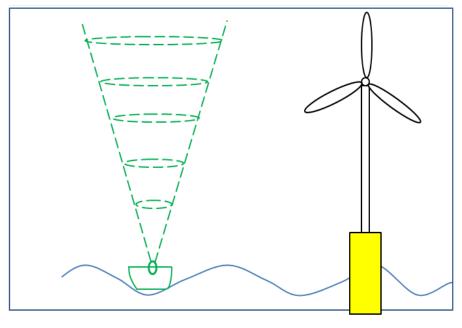
Nacelle LiDAR Measurement System

- > Client ORE Catapult
- Installation on a single turbine on a Offshore Wind Farm under a commercial contract.

res

- Full results not yet released but LiDAR could detect a 2% change in AEP for a moderately eroded turbine
- Uncertainty of test ~ 4.5% but uncertainty on energy delta ~ 0.9% AEP - Shows power of relative power curve testing.
- Biggest challenge was to isolate effects of blade repair from changing atmospheric effects.

Commercial Nacelle LiDAR Projects - OWA

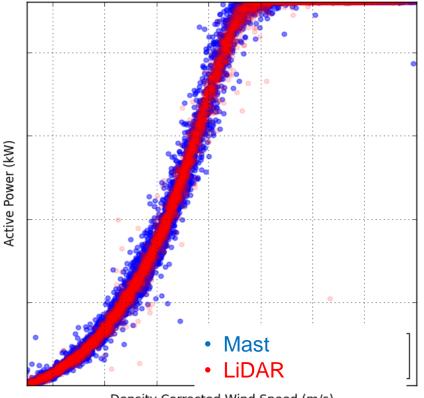


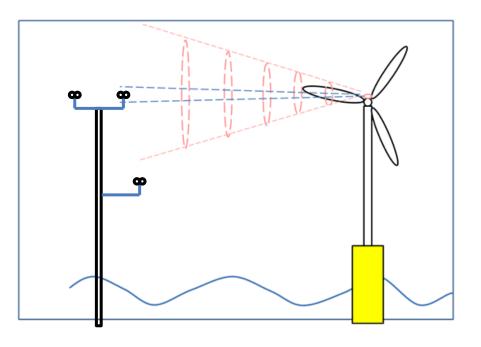
- OWA UK R&D Group with objective to reduce cost of offshore wind to <£100MWh
- > 5 research areas
 - > Wakes and Wind Resource
 - Foundations
 - > Access
 - > Cable Installation
 - > Electrical Systems
- > £88m programme spend to date
- Research co-funded by UK and Scottish governments

Slides stolen from A Clerc – EWEA Resource Assessment Workshop, Bilbao 2016

Project Overview

- Project comprises detailed analysis of existing LiDAR based power curve datasets submitted by OWA members and RES
- Datasets represent most common approaches offshore:
 - Nacelle mounted LiDAR
 - Transition Piece (TP) mounted scanning LiDAR
 - Floating LiDAR

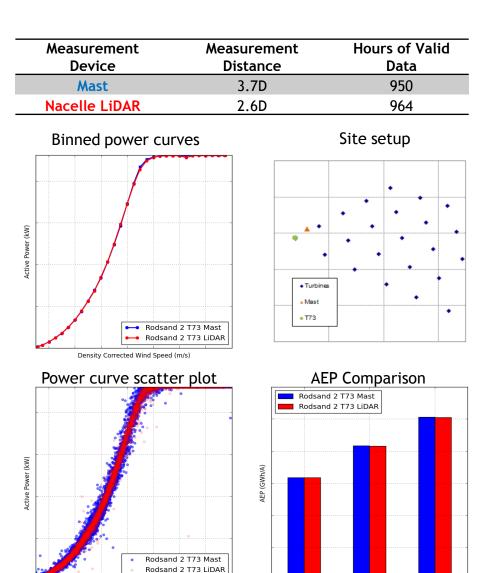

Dataset summary


Technology	Datasets
Nacelle	5 datasets in total, 4 concurrent with masts
Scanning	2 datasets, comparable with each other, but no concurrent mast data
Floating	 2 datasets: One dataset too far from turbine One dataset too short for quantitative analysis

Power Curve Comparisons Sample

Density Corrected Wind Speed (m/s)

Analysis - Compare LiDAR and Mast

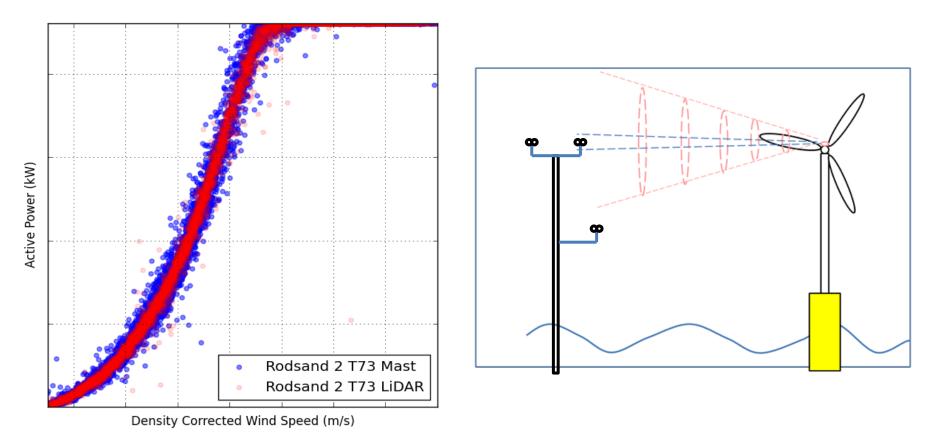


9

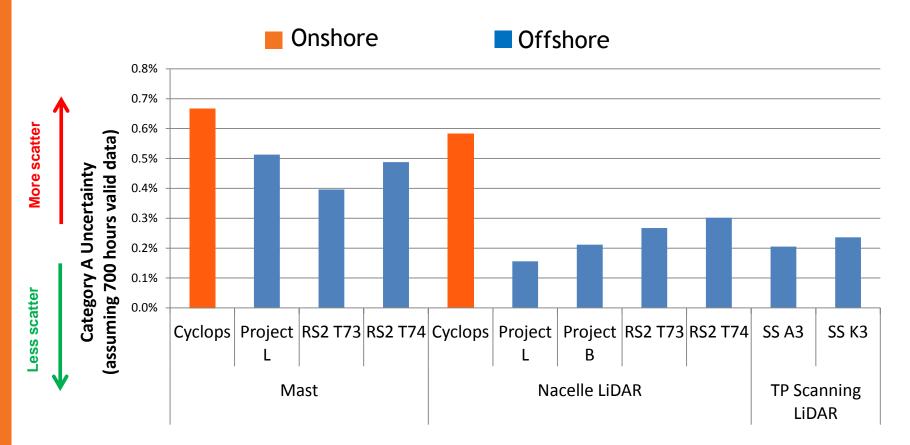
Mean Wind Speed (m/s)

Mast vs Nacelle LiDAR

- Offshore
- Mast analysis is IEC compliant
- Mean power curves in close agreement
 - AEP agrees to 0.1%
- Scatter is lower for the nacelle LiDAR measurement

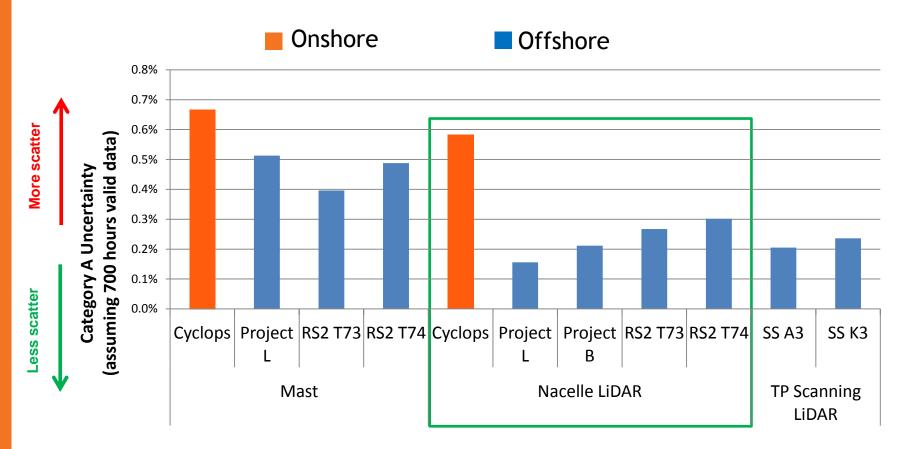


Density Corrected Wind Speed (m/s)


Self-consistency

Do LiDAR power curves have comparable scatter to masts?

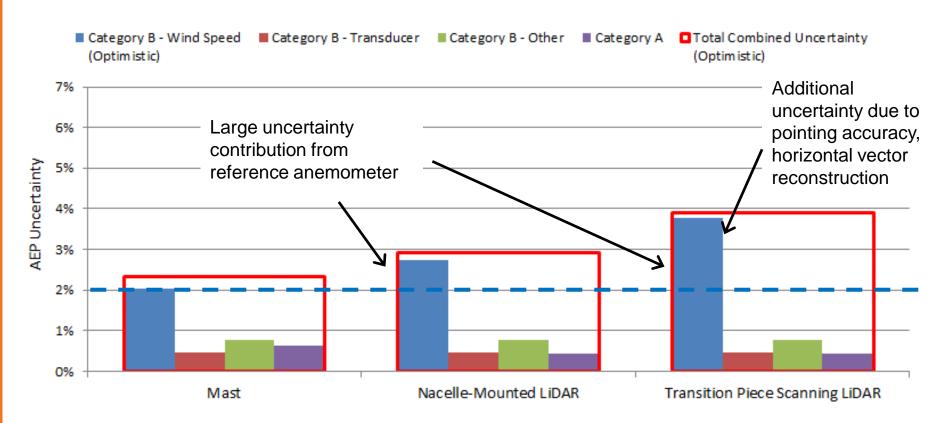
Analysis - Self-Consistency



- Category A Uncertainty quantifies scatter about the mean power curve
- Category A Uncertainty decreases with data count in the above plot all uncertainties have been corrected to 700 hours valid data for comparison

Analysis - Self-Consistency

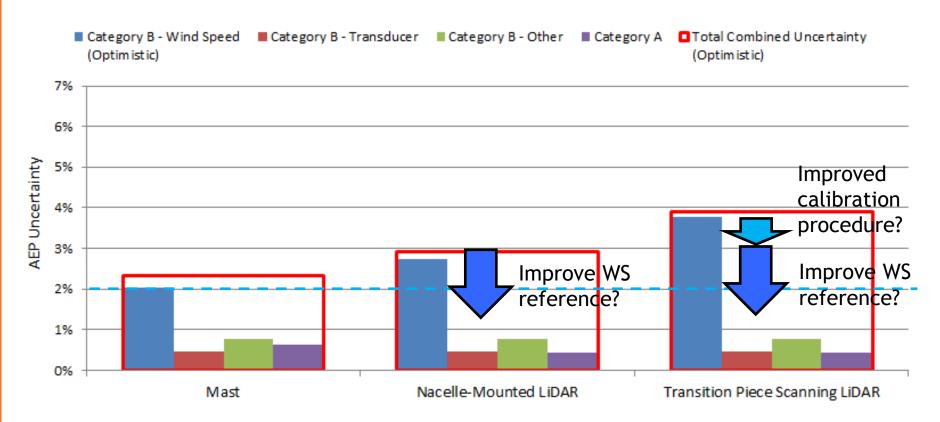
- Highly precise power curve measurement for all nacelle LiDAR datasets
- For each dataset where a comparison can be made, nacelle LiDAR power curve precision is superior to that achieved using masts



Uncertainty Discussion

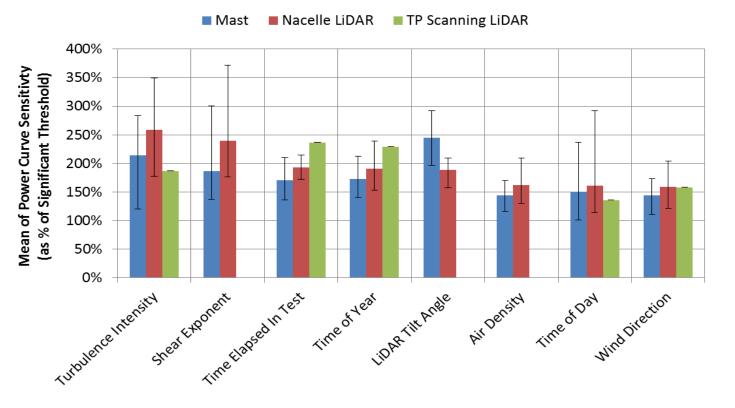
Can LiDARs achieve lower uncertainty than masts?

Illustrative Uncertainties



• LiDAR power curve uncertainties must always be higher than mast power curve uncertainty due to LiDAR wind speed calibration against an anemometer

Illustrative Uncertainties

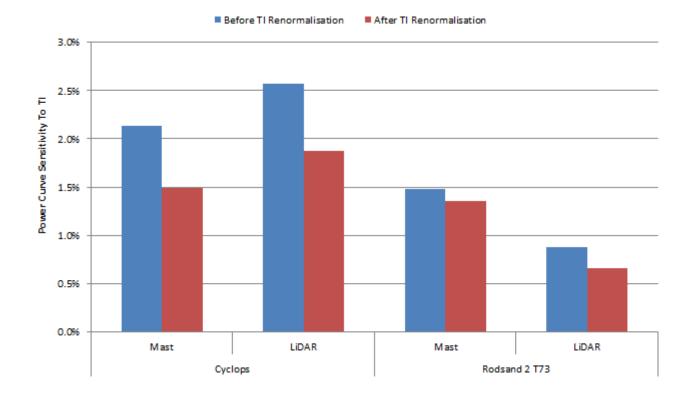


- Key potential for improvement: improve the wind speed reference used in LiDAR calibration
- The relatively high uncertainty assigned to LiDAR measured power curves is strange given their precision and consistently close agreement with masts

Power Curve Sensitivity Analysis

Analysis - Sensitivity

- Nacelle LiDAR and masts show the same sensitivity pattern. Shear and Turbulence are the most significant factors for power curve variation.
- LiDAR Tilt Angle is not associated with significant power curve variation
 - Mast and LiDAR analyses show comparable variation metric (mast slightly higher). The influence is therefore thought to be due to cross correlation with other variables.



Correction Methods

Analysis - Correction Methods

Turbulence Renormalisation

- Using either LiDAR or mast sensitivity of the power curve to TI is reduced through the application of TI renormalisation for both Cyclops and Rødsand 2 T73
- These results imply that TI renormalisation can be applied successfully using LiDAR measured TI signal as long as reference and measured TI are consistent

Finally UniTTE

- Currently RES fully satisfied that nacelle LiDARs can be used to perform accurate and precise measurements of power curves offshore or for simple terrain.
- Understanding how complex terrain will affect the testing process is the next step to really unlock nacelle LiDAR as a useful tool.
- Unfortunately there have been some hiccups in the RES complex terrain campaign – To be installed on Thursday hopefully!

Fingers crossed!

Wind speed (kts)

Local date	Thurso	Thursday, Nov 17								Friday, Nov 18							
Local time	00h	03h	06h	09h	12h	15h	18h	21h	00h	03h	06h	09h	12h	15h	18h	21h	
Wind direction	1	1	1	1	7	7	1	4	4	7	1	1	7	~	7	-	
Wind speed (kts)	12	10	9	9	11	8	7	7	8	8	8	7	5	5	7	9	
Wind gusts (max kts)	25	22	20	21	18	20	21	15	19	18	17	12	8	9	15	17	
Cloud cover	\bigcirc	Ś	S	ି	ି	\bigcirc	\bigcirc	<mark>.</mark> √0	20	\bigcirc	\bigcirc	Ä	÷.	÷.	১	<u>√</u> 0	
Precipitation type		_	*		_			0				_					
Precipitation (mm/3h)			0														
Air temperature (°C)	-1	-1	-1	-2	0	-1	-4	-4	-4	-4	-4	-3	0	-2	-3	-3	
Air pressure (hPa)	900	897	894	892	891	890	889	889	889	889	889	890	891	892	894	895	
Local date	Saturd	Saturday, Nov 19 Sunday, Nov 20															
Local time	00h	03h	06h	09h	12h	15h	18h	21h	00h	03h	06h	09h	12h	15h	18h	21h	
Wind direction	7	7	7	7	7	1	1	-	-	1	7	7	7	~	~	7	

Any Questions?

