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Why wind turbine inflow?
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How do we get 𝑉𝑉∞?

• Measure with:

–Met mast

–Lidar:

• Ground-based

• Hub mounted
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But where do we find 𝑉𝑉∞?

Decorrelation:

– Non-homogeneous 

wind field

– Move closer to  the 

turbine
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Showstopper: The induction zone 
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Evolution of 𝑉𝑉∞ + induction zone 
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Benefits of near-rotor measurements 

• Improves wind speed –
power/load correlation

• Avoids building expensive 
met masts

• Universal measurement 
procedure

UniTTe

Induction zone 

model 

Nacelle mounted lidars for 
power and loads 
assessment 
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

𝐶𝐶𝑇𝑇𝐶𝐶𝑇𝑇
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

Meyer Forsting AR et al.: Modelling lidar volume-averaging and its 
significance to wind turbine wake measurements: Wake Conference 2017. 
Vol. 854. 2017. 

Meyer Forsting AR et al. Validation of a CFD model with a synchronized 
triple-lidar system in the wind turbine induction zone. Wind Energy. 
2017;20:1481-1498. 

Meyer Forsting AR, Troldborg N. A finite difference approach to despiking
in-stationary velocity data - tested on a triple-lidar. Journal of Physics: 
Conference Series (Online). 2016

Conferences:

Torque 2016

Wake Conference 2017

UNCECOMP 2017
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Model validation
Can we model the induction zone? 

(Medici 2011)

Lines  = Models

Markers = Wind tunnel measurements

𝒙𝒙

(Simley 2016)

𝒓𝒓
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Model validation
The triple-lidar measurement campaign
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Model validation
(Typical) validation approach

10 x 30 minute periods

1117 Horizontal planes

197 000 measurement points

Model
𝒙𝒙

𝒚𝒚
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Model validation
Low sample size

• 187 points per horizontal scan

• 15 seconds for one scan

• 30 min period = 120 points per 
grid cell
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Model validation
Triple-lidar uncertainties

Inflow

variability

Free-stream

estimate

𝒙𝒙

𝒚𝒚



DTU Wind Energy, Technical University of Denmark 23 November 201716 Modelling Wind Turbine InflowDTU Wind Energy, Technical University of Denmark

Model validation
Triple-lidar uncertainties

Free-yawing turbine + fixed measurement grid

Coordinate

system mismatch
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Model validation
Triple-lidar uncertainties

Inflow

variability

Coordinate

system mismatch

Free-stream

estimate

Volume-

averaging

Spatio-temporal

averaging

Measurement

noise
Measurement

location

Model

EllipSys3D
• RANS 

• Steady-state

• Actuator disc with airfoil data

• Log-law ie. neutral stability
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Model validation
Stochastic validation approach

3 measurement points 
taken at different 
times/horizontal scans 
close to the rotor 

Match boundary 
conditions 
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Model validation
Stochastic validation

• 197 000 lidar measurements

• 8 measurement days

• All measurements used at once

• 14 CFD simulations

DTU Wind Energy, Technical University of Denmark

𝒙𝒙

𝒚𝒚
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

”Any physical theory is always 
provisional: you can never prove it”

Stephen W. Hawking
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

Nathan J, Meyer Forsting AR, Troldborg N, Masson C. Comparison of 
OpenFOAM and EllipSys3D actuator line methods with (NEW) 
MEXICO results: Paper. In Wake Conference 2017 .

Meyer Forsting AR, Troldborg N, Gaunaa M. The flow upstream of a 
row of aligned wind turbine rotors and its effect on power production. 
Wind Energy. 2017;20(1):63–77.

Meyer Forsting AR, Bechmann A, Troldborg N. A numerical study on 
the flow upstream of a wind turbine on complex terrain. Journal of 
Physics: Conference Series (Online). 2016;753.

Mirzaei M, Meyer Forsting AR, Troldborg N. Dynamics of the 
interaction between the rotor and the induction zone. Journal of 
Physics: Conference Series (Online). 2016;753.

Conferences:
Wake Conference 2015
ECCOMAS 2016
Torque 2016
Wind Europe 2016
WES 2017
UNCECOMP 2017
Wake Conference 2017



DTU Wind Energy, Technical University of Denmark 23 November 201722 Modelling Wind Turbine InflowDTU Wind Energy, Technical University of Denmark

Physical parameters
Physics of the induction zone 

EnvironmentThrust
Wind 

Turbine

Blade 
Rotation

Wake 
Rotation

Rotor 
Design

Hub 
HeightMultiple 

Turbines

Dynamic 
Load 

Changes
Yaw & 

Tilt

Topography

Wind 
shear

Atmospheric 
turbulence

max
𝑥𝑥/𝑅𝑅 ≤ −1

∆𝑢𝑢/𝑉𝑉∞

≤ 0.5 %

≤ 1.0 %

≤ 2.0 %

> 2.0 %

𝒙𝒙

𝒓𝒓
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Physical parameters
Thrust



DTU Wind Energy, Technical University of Denmark 23 November 201724 Modelling Wind Turbine InflowDTU Wind Energy, Technical University of Denmark

Physical parameters
Thrust

Velocity response to a change in thrust coefficient 

𝒙𝒙

𝒓𝒓

𝝏𝝏𝒖𝒖
𝝏𝝏𝑪𝑪𝑻𝑻
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Physical parameters
Topography
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Physical parameters
Topography
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Physical parameters
Topography
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Physical parameters
Topography

𝜶𝜶𝟏𝟏 −𝜶𝜶𝟐𝟐
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

𝐶𝐶𝑇𝑇𝐶𝐶𝑇𝑇
Branlard, ESP; Meyer Forsting, AR: Using a cylindrical vortex model to 
assess the induction zone in front of aligned and yawed rotors. 
Proceedings of EWEA 2015.

Troldborg N, Meyer Forsting AR. Wind Energy. 2017. A simple model of the 
wind turbine induction zone derived from numerical simulations.
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Simple model
Universal induction zone

𝑥𝑥/𝑅𝑅 = −0.5𝑥𝑥/𝑅𝑅 = −1.5
𝒙𝒙/𝑹𝑹

𝒓𝒓/𝑹𝑹
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Simple model
Axial induction behaviour along x 

𝒙𝒙/𝑹𝑹

𝒓𝒓/𝑹𝑹

𝐶𝐶𝑇𝑇 = 0.8
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Simple model
Axial induction behaviour along r 

𝒙𝒙/𝑹𝑹

𝒓𝒓/𝑹𝑹

Normalised averaged RANS profiles 
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Simple model
Simple vs CFD

𝒙𝒙/𝑹𝑹

r/𝑹𝑹

𝐶𝐶𝑇𝑇𝐶𝐶𝑇𝑇
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Modelling the induction zone
The quest for 𝑉𝑉∞

Model 
validation

Physical 
parameters

Simple 
model 

𝐶𝐶𝑇𝑇𝐶𝐶𝑇𝑇
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Conclusions
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• Validated CFD model with a novel 
stochastic approach

• Induction zone independant of physical 
parameters except for the thrust coefficient 
and topography

• Possible to describe the axial induction with 
a simple model 
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Open Questions
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• Wind farm effects 

• Dynamic load changes

• Turbulence evolution

• Complex terrain

0.5%
3.0%
1.0%
5.0%

Possible Impact
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Outlook
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• Continuing simple model validation

• Simple radial velocity model

• Complex terrain:

– Model validation

– Include complex physics

– Model sensitivity



DTU Wind Energy, Technical University of Denmark

Outlook
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Credit: Antoine Borraccino 
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UniTTe
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Model validation
Can we model the induction zone? 

(Simley 2016)
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Model validation
Triple-lidar uncertainties

Volume-

averaging

Spatio-temporal

averaging
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