How does turbulence change approaching a rotor?

Jakob Mann, Alfredo Peña, Niels Troldborg & Søren J. Andersen

Technical University of Denmark DTU Wind Energy, Roskilde, Denmark

June 24, 2017, DTU Wind Energy

Induction zone experiment at DTU Wind Energy E. Simley et al, J. Renewable Sustainable Energy, 8 013301 (2016)

Met mast 280°

Results for mean wind and turbulence

J. Mann et al Turbulence in induction zone (3 of 14)

Results for mean wind and turbulence

- Stagnation clear
- σ_u (and σ_w) almost constant

Results for mean wind and turbulence

- Stagnation clear
- σ_u (and σ_w) almost constant
- Not much statistics

Vorticity based methods E. Branlard, 2017

- To a first approximation, the presence of the wind turbine does not affect the turbulence spectrum significantly.
- Slight decrease of energy at high frequencies implying a slight decrease of turbine loads
- Further investigations necessary to conclude whether effect is systematic.

The Nørrekær Enge Experiment

A. Peña et al, Wind Energ. Sci. 2 (2017)

- Pulse five-beam lidar on nacelle (only central beam used here)
- Ten ranges (49, 72, 95, 109, 121, 142, 165, 188, 235, and 281 m)

Induction flow measured by lidar

Nørrekær Enge

Quasi-steady fluctuations (very low frequencies)

$$f(\xi, \boldsymbol{a}, U_{\infty}) \equiv \frac{U}{U_{\infty}} = 1 - \boldsymbol{a} \left(1 + \frac{2\xi}{\sqrt{1 + 4\xi^2}} \right)$$
(1)

A slow fluctuation in U_{∞}

$$\frac{S(x)}{S_{\infty}} = \left(\frac{\partial U}{\partial U_{\infty}}\right)^2 \tag{2}$$

where S(x) is the spectrum at a low frequency at the position x while S_{∞} is the upstream, undisturbed spectrum.

$$\frac{\partial U}{\partial U_{\infty}} = \frac{\partial f}{\partial U_{\infty}} U_{\infty} + f = f - \left(1 + \frac{2\xi}{\sqrt{1 + 4\xi^2}}\right) \frac{\partial a}{\partial U_{\infty}} U_{\infty}$$
(3)

Induction as a function of U_{∞}

from 10-minute beam-0 measurements

J. Mann et al Turbulence in induction zone (8 of 14)

Comparison with theory for low frequencies

J. Mann et al

Comparison with theory for low frequencies

J. Mann et al

Comparison with theory for low frequencies

J. Mann et al

Comparison with theory for low frequencies

J. Mann et al

LES approach

- Simulations with and without a SQT93-2.3 turbine with identical ambient flow
- Turbine simulated as an actuator disk
- Turbulence generated by Mann model at 8, 11 and 13 m/s (shear free)

Snapshot of streamwise velocity with rotor

without rotor

Spectra at rotor center

Energy of lowest three frequencies (full lines) compared to quasi-steady model (dots)

- Above rated the change of energy approaching the rotor is well predicted by model
- Below rated LES shows less reduction then model

Conclusion

• A simple, quasi-steady model for changes of inflow turbulence is developed

- A simple, quasi-steady model for changes of inflow turbulence is developed
- The slope of the thrust coefficient curve is the crucial parameter

- A simple, quasi-steady model for changes of inflow turbulence is developed
- The slope of the thrust coefficient curve is the crucial parameter
- It reproduces the low-frequency changes observed from a forward looking lidar

- A simple, quasi-steady model for changes of inflow turbulence is developed
- The slope of the thrust coefficient curve is the crucial parameter
- It reproduces the low-frequency changes observed from a forward looking lidar
- LES supports (partially) the findings

- A simple, quasi-steady model for changes of inflow turbulence is developed
- The slope of the thrust coefficient curve is the crucial parameter
- It reproduces the low-frequency changes observed from a forward looking lidar
- LES supports (partially) the findings
- Higher frequencies remains to be investigated and measured