Predicting free-stream wind speed in complex terrain with lidar measurements

Alexander Meyer Forsting, Niels Troldborg, Andreas Bechmann

DTU Wind Energy Department of Wind Energy

The induction zone

The induction zone in complex terrain

Predict free-stream?

Universal?

Test universality

WIND ENERGY Wind Energ. (2017)

Parametric study with EllipSys3D

RESEARCH ARTICLE

Wind Energy

Validation of a CFD model with a synchronized triple-lidar system in the wind turbine induction zone

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/we.2103

A. R. Meyer Forsting[®], N. Troldborg, J. P. Murcia Leon, A. Sathe[®], N. Angelou and A. Vignaroli

Department of Wind Energy, Technical University of Denmark, Frederiksborgvej 399, 4000, Roskilde, Denmark

Wind Energ. Sci., 2, 269–283, 2017 www.wind-energ-sci.net/2/269/2017/ doi:10.5194/wes-2-269-2017 © Author(s) 2017. CC Attribution 3.0 License.

Use simple vortex model to predict

induction zone

Wind field reconstruction from nacelle-mounted lidar short-range measurements

Antoine Borraccino¹, David Schlipf², Florian Haizmann², and Rozenn Wagner¹ ¹DTU Wind Energy, Roskilde, Denmark ²Stuttgart Wind Energy, University of Stuttgart, Stuttgart, Germany

Identify parameters influencing induction zone

Identify parameters influencing induction zone

1323 CFD simulations

Numerical approach

Flow over hill

Use simple induction zone model

$$\tilde{U}(\tilde{r}, \tilde{x}) = 1 - a(0, \tilde{x}) f(\epsilon)$$

Longitudinal = vortex sheet

$$a(0, \tilde{x}) = a_0 (1 + \frac{\tilde{x}}{\sqrt{1 + \tilde{x}^2}})$$
$$a_0 = \frac{1}{2} (1 - \sqrt{1 - \gamma C_T})$$

Radial variation $f(\epsilon) = sech^{\alpha}(\beta\epsilon)$

$$\tilde{U}(r,x) = \frac{U(r,x)}{U_{\infty}}, \qquad \epsilon = \frac{r}{r_{1/2}(x)}, \qquad \tilde{r}_{1/2}(x) = \frac{r_{1/2}(x)}{R}, \qquad \tilde{r} = \frac{r}{R}, \qquad \tilde{x} = \frac{x}{R}$$

Model prediction error

13 DTU Wind Energy, Technical University of Denmark

30th March 2016

- Isolate simple model error
- Test in an volume upstream

- Only keep points that are below 2% error
- Group data over each hill shape

 Point density in x-y planes along constant depth

Error source

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1 ⊾ -5

-4

y/R

Error evolution along centreline

Minimise error

Minimum error location

Minimum along centreline

Conclusions

- Simple induction model works fine in moderate terrain
- Largest error from free-speed evolution
- Optimal measurement location lies close to rotor x < 3R

Outlook

Measuring the free-stream

- 1. Measure relative close to turbine and use generic thrust curve
- 2. Use simple terrain model to predict $V_{\infty}(x)$
- 3. Fit induction model + $V_{\infty}(x)$

Acknowledgements

UniTTe.dk

Thanks for your attention!

30th March 2016