

2.7182818284

Power curve measurement using V_∞ estimates from nacelle lidars

ZephIR Dual-Mode

5-beam Avent

demonstrator

<u>A. Borraccino</u>, R. Wagner, DTU Wind Energy, <u>borr@dtu.dk</u>

Power performance testing: where are we?

- New standards: IEC 61400-12-1:ed2 (2017)
- What's new?
 - mast and/or RSD e.g. ground-based lidar
 - hub height spd + shear measurement
 or rotor equivalent wind speed
 - (somewhat) more thorough power curve uncertainty assessment
- But STILL
 - no nacelle lidar
 - measurements between
 - $2D_{rot}$ and $4D_{rot}$ from the turbine

In my PhD ... the story

• Submitted last week!

DTU

In my PhD ... the story

• Submitted last week!

- 1) "Generic methodology for field calibration of nacellebased wind lidars" (<u>link</u>)
- Wind field reconstruction from nacelle-mounted lidar short-range measurement" (<u>link to WES</u>)
- 3) Uncertainty propagation in WFR models (using Monte Carlo methods)

4) Applied to power perf.

Searching for free stream wind speed

- Decorrelation WSpeed / power
- H_{hub} speed sufficient?

• 2.5D not really free wind ...

5 **DTU Wind Energy**, **Technical University of Denmark**

Model-fitting Wind Field Reconstruction for power performance testing

1) <u>2.5D distance</u> fitting wind speed + direction + shear to lidar-measured LOS velocities

DTU

2

Model-fitting Wind field reconstruction for power performance testing

• Several possibilities for lidar measurements:

Lidar measurements @ multi-dist (near flow) Mast comparison, Nørrekær Enge campaign, 7 months

5B-Demo: use the 5 LOS**ZDM**: use 6 pts@[0.5; 0.75; 1.0; 1.15] D_{rot}@[0.3; 1.0; 1.25] D_{rot}

HWS estimated @hub height and @2.5D distance

Wind speed evolution within the induction

DTU

Process:

- 1) lidar-estimated H_{hub} speed @each distance adimensionned by lidar-estimated V_{∞} (for each 10min period)
- 2) Averaging of non-dimensional spd by V_{∞} bins of 0.5 ms^-1

Measured power curves – 10-min data

10 DTU Wind Energy, Technical University of Denmark

Uncertainty quantification in WFR models

Models are always wrong

➔ framework for UQ

Monte Carlo methods in brief (dummy example)

INPUTS DISTRIB. OF ERRORS OUTPUTS DISTRIB. **OF ERRORS** R₁₂ = 0.31 R₁₃ = 0.78 × R₁₂ = 0.175 ≻ Model $R_{23} = 0.01$ \times^{\sim} $oldsymbol{g}(oldsymbol{x}$, $oldsymbol{ heta}_{\mathrm{m}})$ 7∼ أوالداد مترأده Ϋ́ Y₁ Y₂ X_1 Χ₂ X_3

Monte Carlo UQ results for combined wind-induction WFR model

14 **DTU Wind Energy**, Figure 4.11: Profiling nacelle lidars MC results: expanded uncertainties $U_{V_{\text{H}}}$, $U_{\theta_{\text{r}}}$, $U_{\alpha_{\text{exp}}}$, $U_{a_{\text{ind}}}$ as a function of V_{H} , θ_{r} , α_{exp} and a_{ind} .

Monte Carlo UQ results for combined wind-induction WFR model

Conclusion

the model <u>uncertainty on V_{∞} </u> estimated by the nacelle lidars is <u>negligibly different</u> from the wind speed uncertainty of the <u>reference anemometer</u> used during the LOS velocity calibration campaign

Power curve uncertainty assessment (1/4)

- The procedure is based on the new standards IEC 61400-12-1: ed2 (2017)
- with some deviations: no "method" uncertainty considered (related to REWS, and shear, veer, TI normalisation, etc)
- Method to estimate the cat. B wind speed for the lidars combines the model uncertainty (Monte Carlo) with fitting residuals (inadequacy)

The "flow distortion uncertainty"

→2% for the cup (no site cal, default IEC for 2.5D dist)
 →1% for the lidars: fair enough since measurements taken close to the rotor (about 1D_{rot})

Power curve uncertainty assessment (2/4) cat. B wind speed uncertainty

- The reduction of combined wind speed uncertainty is "artificial" since due to the different flow distortion uncertainty value
- ➔ need for finer quantification of this component in standards
- Fitting residuals slightly higher for ZDM than 5B-Demo explains the difference

Power curve uncertainty assessment (3/4) cat. A power uncertainty

Lower scatter for the measured power curves with the lidars \rightarrow lower cat. A uncertainty on power output

Power curve uncertainty assessment (3/4) combined power curve uncertainty (k=1)

Take-aways

- V_{∞} is found! The solution: measurements close to rotor, within the induction zone, at multiple distances, e.g. with nacelle lidars
- Wind Field Reconstruction algo. provide estimates comparable classic mast instrumentation (< 1% difference)
- Power curves in flat terrain verified accurately, reduced scatter (as usual with nacelle lidars)
 - →next generation of IEC61400-12-1 standards? (NWIP)
 - → some studies on PCurve uncertainty assessment desirable

• Further work :

- Adaptation and testing of the nacelle lidar short-range measurement technique in complex terrain
 - → one campaign in HillOfTowie (UK), ZDM + 5B-Demo
 - → one campaign in Croatia, with a 4-beam Wind Iris)

Thanks for your attention!

DTU Wind Energy Department of Wind Energy

Ph.D. Thesis

Remotely measuring the wind using turbine-mounted lidars

Application to power performance testing

Antoine Borraccino

Risø campus, Roskilde, 2017

More info:

- website <u>www.unitte.dk</u>
- contact <u>borr@dtu.dk</u>
- Or come to the defence!(?in August?)

Acknowledgements

This work was performed within the UniTTe project (www.unitte.dk) which is financed by Innovation Fund Denmark.

AEP results

- IEC -12-1 methodology
- extrapolated AEPs
- 0.5 m/s bin width
- Relative difference in % of cup-based AEP
- Rayleigh avg speed = 8 m/s

Lidar	@2D (5B-Demo)	multiple distances
measurements	@2.5 D ZDM) (case 1)	@ ೦ (case 2)
Avent 5-Beam demonstrator lidar	Wspeed difference: +0.59%	Wspeed difference: +0.52%
	-0.8%	-0.9%
Zephir Dual Mode lidar	Wspeed difference: +0.32%	Wspeed difference: -0.27%
	-0.3%	+0.5%

→AEP estimations as good with the "multi-distances" method as with the 2.5D (<1.5% difference)

AEP results

Model-based wind field reconstruction

Doppler wind LiDaRs do not...

...measure wind speed, wind direction, shear, ...

see Hardesty, 1987 (wonderful description of lidar principles)

• They:

–only measure LOS velocities

-estimate/reconstruct wind field characteristics (WFC)

25 DTU Wind Energy, Technical University of Denmark

Does this make it any easier?

- In complex terrain:
 - -any "free stream" wind speed idea?
 - -site calibration? Maybe

Does this make it any easier?

- In complex terrain:
 - -any "free stream" wind speed idea?
 - -site calibration? Maybe
- Offshore:
 - -mast expensive
 - -free wind may not be measurable due to wakes
 - 27 DTU Wind Energy, Technical University of Denmark

Power performance verification: "standard" procedure, what's the problem?

DTU

28 DTU Wind Energy, Technical University of Denmark

A simple induction model

Derived from the Biot-Savart law

- -See The upstream flow of a wind turbine: blockage effect
- -two parameters: induction factor $a_{,}$ free wind speed U_{∞}

$$\frac{U}{U_{\infty}} = 1 - a \left(1 + \frac{\xi}{\sqrt{1 + \xi^2}} \right), \text{ with } \xi = \frac{x_W}{R_{rot}}$$

What does the induction looks like in NKE?

Black: theoretical, a = 0.3Colored lines: different 10min periods

Fitting *a* and U_{∞} should be possible