

8281828

Validation of a CFD model with a triple-lidar system upstream of a wind turbine in complex terrain

Alexander Meyer Forsting, Niels Troldborg, Andreas Bechmann, Nikolas Angelou, Nikola Vasiljevic

 $P = \frac{1}{2} \rho A \nu^3 C_p$

DTU Wind Energy Department of Wind Energy

Overview

- The induction zone
- Power curve measurements
- Computational method
- CFD simulations
- Triple-lidar measurements in the induction zone
- CFD measurement comparison
- Conclusion
- Future work

The induction zone

The induction zone

Power curve measurements in complex terrain

Power curve measurements in complex terrain

EllipSys3D

General

- Multi-purpose finite volume solver
- Block-structured grid with collocated variables
- Highly parallelised
- Body forces are implemented via modified Rhie-Chow algorithm

Complex terrain

- Steady-state incompressible RANS
- QUICK scheme solved convective terms
- SIMPLE the pressure-linked terms

- Neutral stratification
- No Coriolis

Terrain flow becomes Reynolds number independent

Actuator disc representation of WT

- Permeable disc with body forces
- Intersectional grid determines forces in fluid domain
- Either constant thrust coefficient over disc

$$F_{\{N,\Delta A\}} = \frac{1}{2}\rho_{\infty}V_{\{\infty,\Delta A\}}^2 C_T \Delta A$$

• Or 2-D airfoil data

Complex terrain test case: Perdigão

Complex terrain test case: Perdigão

Complex terrain test case: Perdigão

15/06/2016

Terrain treatment for mesh generation

Far-field terrain and reference roughness

• Smoothed over grid spacing and towards the edges of the domain

The domain

The domain

Grid sensitivity

Measurements at Perdigão

 Synchronised lidar measurements around WT and valley

Measurements at Perdigão

CFD Results

 $u_R [m/s]$

DTU Wind Energy, Technical University of Denmark

CFD Results

Triple-lidar results

DTU

Comparaison triple-lidar and CFD

Comparaison triple-lidar and CFD

Comparaison triple-lidar and CFD

Comparaison triple-lidar and CFD

33 DTU Wind Energy, Technical University of Denmark

Conclusion

- Automated complex terrain simulations incorporating several preprocessing steps
- Triple-lidar shows high potential for complex flow measurements
- Large uncertainty in inflow conditions needs to be accounted for
- Steady-state RANS seems to capture induction zone correctly
- Computational uncertainty from:
 - Stratification
 - Roughness
 - Turbine
 - Terrain

DTU

Future work

- Investigate more measurement periods
- Include variability of wind direction into validation methodology
- Include stratification

Thanks for your attention! Questions?