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Why calibrating nacelle lidars?

i

e Nacelle lidars applications

—Power performance testing: potential to reduce costs
(offshore, complex terrain)

—Wind turbine controls (e.g. feed-forward)
e Uncertainty assessment in power curves

LT T

—Because it involves

—Guaranteed power curves from turbine manufacturer

e A calibration

—establishes a relation between a measurand and a
calibrated reference quantity value = traceability

—transfers the reference instrument(s) uncertainties to the
tested measurement system through a calibration process

—provides the correction to apply to the measurements
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RWS calibration of profiling nacelle lidars

i

e Principles
—calibrate the lidar RWS and other inputs rather than

reconstructed parameters
(subject to strong flow assumptions)

=>”White box” methodology calibrates

Inputs perturbations Outputs
backscattered light, reconstructed parameter
lidar scanning e.g. WS, WDir, shear, ...

geometry, ...

LIDAR

—

= black box

e Procedure
1) Calibrate the geometry of the lidar: inclinometers + e.g. cone angle
2) Position the beam close to reference instrument(s)

3) Calibrate RWS by comparing to reference
4) Derive uncertainties: reference = RWS
5) Combine RWS (reconstruction algorithms), propagate uncertainties
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RWS calibration of profiling nacelle lidars

HE

e Measurement setup (Hgvsgre, DK)

=2 Mast South

g
Hevsare met mast
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RWS calibration of profiling nacelle lidars

 Measurement setup (Hgvsgre, DK)

one beam of the

Avent Demonstrator
s ZephIR DM

5 bheam passage
\H\ E g

/ cup ] s0onic

Refeq RWS — (HWS>vec ' COS(<tilt>) ' COS(<WD> o LOSdir)
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RWS calibration of profiling nacelle lidars
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e Results

y=10.9982x + 0.0709
R? =1.0000

n y=0.9980x + 0.073
R? = 0.9992
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= The method works ©
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What are the uncertainty sources?

i

e Reference instruments uncertainties
—HWS (IEC 61400-12 procedure for cups)
e Wind tunnel calibration uncertainty

0.01
Ucql = Ucqr1 T+ —F=" (HWS}

V3
e Operational uncertainty
1
Ulsoe = \/_§ cup class number - (0.05 + 0.005 - (HWS) )

e Mounting uncertainty
Umast = 0.5% - (HWS)

—W,ind direction, from calibration certificate of sonic
anemometer:
uWD = 0.4‘0
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What are the uncertainty sources?

i

e Calibration process uncertainties

11

—LOS direction uncertainty
Uros air = 0.1°

—Uncertainty of tilt inclination angle
u, = 0.05°

—Beam positioning uncertainty: uy = 10 cm, shear a,,;, = 0.2
u
Upos = Aexp ?H . (HWS) ~ 0.23% - (HWS)

—Inclined beam and range uncertainty
Uine = 0.052% - (HWS)

”how the probe volume affects the RWS estimation when the beam is inclined”
(see model in DTU report E-0086)
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Uncertainty assessment: how to combine
components?
« GUM methodology: analytic method
1) Define measurement model: y,, = f(xq, x5, ..., X;,)
2) Law of propagation of uncertainties:

i

2
ay .
_ n m . .
U, —\/ E (_6xi uxi) for uncorrelated inputs x;

3) Expanded uncertainty with coverage factor k
Uexp = k- U

typically, k=2 corresponds to 95% confidence interval

e 5 # models studies:
—Lidar-ref measurement error: simple difference per bin
—Forced linear regressions: on binned data / for each bin
—Unforced linear regressions: on binned data / fereach-bin
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Uncertainty assessment: how to combine

components? -
e Propagating uncertainties: "the tree structure”
Ym = Qpinned * Refeq RWS Refeq rws = (HWS),,.. - cos({tilt)) - cos((WD) — LOS ;;,)

Ug uRefeq RWS

Uwp-L0Sg;  Tilt uy,

uLOSdir Uwp

_ 2 2 2 2 2
Ugws = \/ucal t Uope T Umast T Upos T Uiy

=» result: combined uncertainty on y,,
= derive expanded uncertainty
 RWS best estimate:
(RWSindicated>

(RWSgg) =
Apinned
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RWS uncertainty results
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Prevailing uncertainty sources

i

Ym = Qpinned * Refeq RWS

1% 99%

W URefeq rws

10% | ~0% 90%

Uwp-L0Sq;r  Tilt uy,

_ 2 2 2 2 2
Upws = \/ucal t Uope T Umast T Upos T Uipc

6% | 94%
uLOSdl.r Uwp 41% 30% 24% 5% 0.3%

e A large majority of the total uncertainty comes from the cup
anemometer uncertainties!!

e Very little is due to the calibration process

= Explains the linearity observed in the expanded RWS
uncertainty
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Conclusion

e Take-aways
—RWS calibration procedure provides valid results
—RWS uncertainties ~2-3% with 95% confidence

—Major contribution of cup anemometer uncertainties to the
combined RWS uncertainties

i

=>Need for better cup calibration procedures!

=+ more consistency between # Measnet accredited wind
tunnels

e Future work
—create reconstruction algorithms

—propagate RWS uncertainties to reconstructed wind
parameters

—derive uncertainties using commercial reconstruction algo
(lidar manufacturers)

—obtain power curve uncertainties! (AEP)
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Thanks for your attention!

More info:

= website www.unitte.dk
= contact borr@dtu.dk

= DTU E-0O086 report

i
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Preparing questions
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Preparing questions

QUESTIONS from assessment committee EAWE

e |s the calibration process with the mast mounted instruments valid approach

? They have different probe lenghts, measurement process differs
significantly, and hardly you will achive horizontal homogeneity of the flow

almost anywhere.

» What would be different way of calibrating lidars?

 Would you consider using multi-lidar instrumentation for this?

DEWEK 2015, project UniTTe www.unitte.dk
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Data analysis (Avent: L, Zephir: R)

o
o
= Main data Ref eq rws = HWS - cos(tilt) - cos(WD — LOS 4;;.)
— Cup: horizontal wind speed
— Sonic: wind dir
— Lidar: LOS velocity + inclination
e LOS direction evaluation 1: cosine / rectified cosine fitting
x5 " a=0.991 e e = a=0.9637b=0.0284 2=
5 , b=0.0127 B 12 LOSy;, = 288.18°
2 LOSy;, = 286.28° S R?=0.9881
<  R?*=0.9998 = '
- ., 08
o a8 =
—UD v-y':)'% D4;
§ ’ Té 02
i ° 0 50 100 150 200 250 300 400 Z 0 150 200 250 300 380 400

Wind direction (sonic) [7] Wind direction (sonic) [°]
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So the main data are the HWS measured by the cup anemometer, the wind direction measured by the sonic anemometer, and the lidars RWS and inclination angles (tilt and roll). These data allow to obtain a reference equivalent RWS by projection the HWS onto the LOS.

The LOS direction is evaluated via data analysis, in two steps. Here you can see the first one, 5-beam lidar on the left, ZDM on the right. The lidar RWS response to wind direction is fitted to a cosine / rectified cosine 
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Data analysis (Avent: L, Zephir: R)

i

e LOS direction evaluation 2 (finer)
— Projection angle range: LOS dir (V1) x=1°
— Linear reg. each 0.1°
y = RWS
x = HWS - cos(WD — proj angle) - cos(physical beam inclination)
y=a-x+b > 1RSS value
— LOS dir = min parabola

y gz ¥ =4.0329x B o2
| =1.2996x? _ | —2318.44x
—743.47x % +333234.84

+ 106330.65 s

F
o

min = 287.4383°
“"'R? =0.99999

40

min = 286.0313°
R? = 0.99982

>
o

Sum of squares of residuals
.

I

Sum of squares of residuals

_—
? 385 285.5 288 286 5 267 2075 287 287.5 288 268 5 269 2805
Projection angle [°] Projection angle [°]
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Then a numbered of projection angles are used to perform linear regressions, each providing one sum of squares of residuals value. By plotting the RSS vs. the projection and taking the minimum of the parabola, the LOS direction is obtained
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Calibration results (Avent: L, Zephir: R)
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e "RAW?” calibration results

— Good agreement between lidars’ RWS and the projection of the
HWS on the LOS

— Influence of the WS distribution = use binned data instead

y=10.9980x + 0.073
R? = 0.9992

y=1.0097x — 0.0644
R? =0.9979

Lidar radial wind speed [m/s]
Lidar radial wind speed [m/s]

y = 1.0069x
R%Z =0.9991

y =1.0022x
R? = 0.9978
B ] 0w 1M 12 13 14 ‘ & r 5 o 12

Cup projected wind speed [m/s] Cup projected wind speed [m/s]

3
3 4 16
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Once the LOS direction is estimated, the reference equivalent RWS can be derived. Here you can see the linear regressions using 10-min averaged data, which seem to show good agreement betweem the lidars RWS and the projected HWS (note that the calibration results are obtained for different measurement period here
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Calibration results (Avent: L, Zephir: R)

e "binned” calibration results

— Use the forced regression
=» consistent gains

— Offset is not physical

y =0.9982x + 0.0709
R?> =1.0000

Lidar radial wind speed [m/s]

y =1.0058x
R? =0.9999

Cup projected wind speed [m/s]
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y =1.0153x — 0.1049
R> =0.9999

y = 1.0054x
R% =0.999
T 8 r 8 8 10 11 12 13 14 18

Cup projected wind speed [m/s]
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Calibration results
ZDM

e Parameter to adjust: width of valid azimuth sector

8.9m

«‘;[.- st -
A ik i

e Used for averaging realtime data from "RAW?” files
e Only one beam to calibrate since scanning: here ”2-deg wide” sector
e NB: the selected arc is ~20m large = can influence results

W s'-\nt.,.- s

=
—]
—

I
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