# Turbulence characterization from forward-looking nacelle-lidar measurements

#### Alfredo Peña, Jakob Mann, Nikolay K. Dimitrov and Anand Natarajan

DTU Wind Energy, Risø campus - Department of Wind Energy

#### UniTTe workshop 2016 – Copenhagen

November 15, 2016



Ξ

• one point spectra:  $F_{ij}(k_1) = \iint \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3$ 

- $\Phi_{ij}$  estimated from the Mann (1994) model ( $\alpha \varepsilon^{2/3}$ , L, and  $\Gamma$ )
- Normally  $F_{11}$ ,  $F_{22}$ ,  $F_{33}$ , and  $F_{13}$  are computed
- A 2-parameter LUT is created using:

$$F_{ij}(k_1; \alpha \varepsilon^{2/3}, L, \Gamma) = L^{5/3} \alpha \varepsilon^{2/3} F_{ij}(k_1 L; 1, 1, \Gamma)$$
(1)

- one point spectra:  $F_{ij}(k_1) = \iint \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3$
- $\Phi_{ij}$  estimated from the Mann (1994) model ( $\alpha \varepsilon^{2/3}$ , L, and  $\Gamma$ )
- Normally  $F_{11}$ ,  $F_{22}$ ,  $F_{33}$ , and  $F_{13}$  are computed
- A 2-parameter LUT is created using:

$$F_{ij}(k_1; \alpha \varepsilon^{2/3}, L, \Gamma) = L^{5/3} \alpha \varepsilon^{2/3} F_{ij}(k_1 L; 1, 1, \Gamma)$$
(1)

- one point spectra:  $F_{ij}(k_1) = \iint \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3$
- $\Phi_{ij}$  estimated from the Mann (1994) model ( $\alpha \varepsilon^{2/3}$ , L, and  $\Gamma$ )
- Normally  $F_{11}$ ,  $F_{22}$ ,  $F_{33}$ , and  $F_{13}$  are computed
- A 2-parameter LUT is created using:

$$F_{ij}(k_1; \alpha \varepsilon^{2/3}, L, \Gamma) = L^{5/3} \alpha \varepsilon^{2/3} F_{ij}(k_1 L; 1, 1, \Gamma)$$
(1)

- one point spectra:  $F_{ij}(k_1) = \iint \Phi_{ij}(k) dk_2 dk_3$
- $\Phi_{ij}$  estimated from the Mann (1994) model ( $\alpha \varepsilon^{2/3}$ , L, and  $\Gamma$ )
- Normally  $F_{11}$ ,  $F_{22}$ ,  $F_{33}$ , and  $F_{13}$  are computed
- A 2-parameter LUT is created using:

$$F_{ij}(k_1;\alpha\varepsilon^{2/3},L,\Gamma) = L^{5/3}\alpha\varepsilon^{2/3}F_{ij}(k_1L;1,1,\Gamma)$$
(1)



- one point spectra:  $F_{ij}(k_1) = \iint \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3$
- $\Phi_{ij}$  estimated from the Mann (1994) model ( $\alpha \varepsilon^{2/3}$ , L, and  $\Gamma$ )
- Normally  $F_{11}$ ,  $F_{22}$ ,  $F_{33}$ , and  $F_{13}$  are computed
- A 2-parameter LUT is created using:

$$F_{ij}(k_1;\alpha\varepsilon^{2/3},L,\Gamma) = L^{5/3}\alpha\varepsilon^{2/3}F_{ij}(k_1L;1,1,\Gamma)$$
(1)

• The LUT is used to fit the Mann (1994) model parameters to simulated or measured spectra

DTU Wind Energy

#### Fitted parameters to 'measured' spectra



DTU



#### Radial velocity spectra of lidar measurements

• From Mann et al. (2009):

$$F_{\nu}(k_1) = n_i n_j \iint \left| \hat{\phi}(\boldsymbol{k} \cdot \boldsymbol{n}) \right|^2 \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3, \qquad (2)$$

where  $\boldsymbol{n} = (-\cos\varphi, \sin\varphi\cos\theta, \sin\varphi\sin\theta)$ 

• Weighting function of CW lidar:

$$\phi(s) = \frac{1}{\pi} \frac{z_R}{z_R^2 + s^2} \Leftrightarrow \hat{\phi}(k_1) = \exp(-|k_1|z_R)$$
(3)

• Weigthing function of a pulsed lidar:

$$\phi(s) = \frac{z_R - |s|}{z_R^2} \Leftrightarrow \hat{\phi}(k_1) = \operatorname{sinc}^2(k_1 z_R/2)$$
(4)

#### Radial velocity spectra of lidar measurements

• From Mann et al. (2009):

$$F_{\nu}(k_1) = n_i n_j \iint \left| \hat{\phi}(\boldsymbol{k} \cdot \boldsymbol{n}) \right|^2 \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3, \qquad (2)$$

where  $\boldsymbol{n} = (-\cos\varphi, \sin\varphi\cos\theta, \sin\varphi\sin\theta)$ 

• Weighting function of CW lidar:

$$\phi(s) = \frac{1}{\pi} \frac{z_R}{z_R^2 + s^2} \Leftrightarrow \hat{\phi}(k_1) = \exp(-|k_1|z_R)$$
(3)

• Weigthing function of a pulsed lidar:

$$\phi(s) = \frac{z_R - |s|}{z_R^2} \Leftrightarrow \hat{\phi}(k_1) = \operatorname{sinc}^2(k_1 z_R/2)$$
(4)

#### Radial velocity spectra of lidar measurements

• From Mann et al. (2009):

$$F_{\nu}(k_1) = n_i n_j \iint \left| \hat{\phi}(\boldsymbol{k} \cdot \boldsymbol{n}) \right|^2 \Phi_{ij}(\boldsymbol{k}) dk_2 dk_3, \qquad (2)$$

where  $\boldsymbol{n} = (-\cos\varphi, \sin\varphi\cos\theta, \sin\varphi\sin\theta)$ 

• Weighting function of CW lidar:

$$\phi(s) = \frac{1}{\pi} \frac{z_R}{z_R^2 + s^2} \Leftrightarrow \hat{\phi}(k_1) = \exp(-|k_1|z_R)$$
(3)

• Weigthing function of a pulsed lidar:

$$\phi(s) = \frac{z_R - |s|}{z_R^2} \Leftrightarrow \hat{\phi}(k_1) = \operatorname{sinc}^2(k_1 z_R/2)$$
(4)

## CW lidar, $\Gamma = 3$ , $\alpha \varepsilon^{2/3} = 0.1$ , $\varphi = 15^{\circ}$



## pulsed lidar, $\Gamma = 3$ , $\alpha \varepsilon^{2/3} = 0.1$ , $\varphi = 15^{\circ}$



Φ-contributions,  $\Gamma = 3$ ,  $\alpha \varepsilon^{2/3} = 0.1$ , z/L = 50,  $\varphi = 15^{\circ}$ 

top beams (solid lines), bottom beams (dashed lines)



## $\sigma^2_{ m beam}$ for $\Gamma=3$ , $arphi=15^\circ$

pulsed lidar in solid lines and CW lidar in dashed lines



## $\sigma_{ m beam}^2$ for $\Gamma = 3$ , $\varphi = 15^\circ$

pulsed lidar in solid lines and CW lidar in dashed lines



 $\begin{aligned} \sigma_{\text{beam}_{\text{unf}}}^2(\theta) &= \sigma_u^2 \cos^2 \varphi + \sigma_v^2 \sin^2 \varphi \cos^2 \theta + \sigma_w^2 \sin^2 \varphi \sin^2 \theta \\ -2\langle u'w' \rangle \cos \varphi \sin \varphi \sin \theta \implies \text{Doppler spectra info!} \end{aligned}$ 

#### Mann-based LUT of the lidar radial vel. spectra

Due to misalignment, we need 1 more dimension (±2°)!,  $\Gamma$  = 3,  $\varepsilon^{2/3}$  = 0.1, z/L = 50,  $\varphi$  = 15°



## Thank you for the attention!



DTU Wind Energy Department of Wind Energy