How to measure remotely the wind using nacelle lidars for power performance testing

A. Borraccino

Ph.D. defence, 30th August 2017

Supervisors: Michael Courtney, Rozenn Wagner
Project: UniITTe

DTU Wind Energy
Department of Wind Energy
Outline

1. Introduction
2. Calibration of wind lidars
3. Wind field reconstruction
4. Power performance testing
Outline

1. Introduction
2. Calibration of wind lidars
3. Wind field reconstruction
4. Power performance testing
Motivations

Source: CDIAC
Motivations
Motivations

- The wind industry is a business
 - strives for making money
 - no such big machines and large scale wind farm without a profitable business
How wind industry ensures it makes money

Wind resource

Power curve of wind turbines

Annual energy production

Is very uncertain

Guaranteed by manufacturer

Contractual agreements + international standards

Basis for bankable wind projects (GWh/year)
Power performance testing

• **GOAL 1:** relate turbine power to energy available in the wind

This needs measurements of:
- Turbine power
- (free stream) Wind speed

“the wind speed at the turbine position as if the wind turbine was not there”

• **GOAL 2:** assess power curve uncertainties

- how far from the true power curve (unmeasurable) is the measured one

“the wind turbine will produce that much energy at this wind speed, and we’re sure with a probability of XX %”
Power performance testing
The old way

meteorology mast far enough away (2-4 diameters)
+ cup anemometers
Power performance testing
The modern ways (1/2)

Remote sensing instruments

–

new IEC standard (2017): use of **ground-based wind lidars** (profilers) allowed

ZephIR 300 (by ZephirLidar) WindCube (by Leosphere)
Power performance testing
The modern ways (2/2)

Remote sensing instruments

Future/Now: use of nacelle-based wind lidars

ZephIR Dual Mode (scanning) by ZephirLidar
Wind Iris (4-beam) by AventLidar
Wind Eye (4-beam) by Windar Photonics
Diabrezza (9-beam) by Mitsubishi Electric
Why nacelle lidars for power performance testing

For modern multi-megawatt turbines:

Cost-efficiency
- met. mast
- ground-based lidars
- nacelle-based lidars

especially offshore!

Representativity of wind measurements
- met. mast
- ground-based lidars
- nacelle-based lidars

especially in complex terrain!
Lidar

- **LIght Detection And Ranging**: “a radar using light”
- **Remotely measuring**: from some meters to >10 km away

Principles of coherent Doppler wind lidars

1. **Backscattered light** → **FFT** → **Doppler spectrum**
2. **Doppler spectrum** → **estimator** → **LOS velocity**
3. **LOS velocity** → **WFR model** → **Wind Field Characteristics**

Credit: N. Vasiljevic
Lidar

- **Light Detection And Ranging:** “a radar using light”
- **Remotely measuring:** from some meters to >10 km away

Principles of coherent Doppler wind lidars

1. Backscattered light
2. Doppler spectrum
3. LOS velocity
4. Wind Field Characteristics

Credit: N. Angelou
Lidar

- **Light Detection And Ranging:** “a radar using light”
- **Remotely measuring:** from some meters to >10 km away

Principles of coherent Doppler wind lidars

1. Backscattered light → FFT → Doppler spectrum
2. Doppler spectrum → estimator → LOS velocity
3. LOS velocity → WFR model → Wind Field Characteristics

5B-demo
Lidar

- LIght Detection And Ranging: “a radar using light”
- Remotely measuring: from some meters to >10 km away

Principles of coherent Doppler wind lidars

1. Backscattered light → FFT → Doppler spectrum
2. Doppler spectrum → estimator → LOS velocity
3. LOS velocity → WFR model → Wind Field Characteristics

5B-demo
Research questions

1) What are the uncertainties inherent to the measurements performed using a nacelle-mounted lidar?

- Calibration procedures required
 see article in Remote Sensing journal:
 "Generic Methodology for Field Calibration of Nacelle-Based" (2016)
 A. Borraccino, M. Courtney, R. Wagner

2) How can nacelle-mounted lidars provide free-field wind characteristics for power curve measurement?

- New wind field reconstruction methodologies
 see article in Wind Energy Science journal:
 "Wind field reconstruction from nacelle-mounted lidar short-range measurements" (2017), A. Borraccino, D. Schlipf, F. Haizmann, R. Wagner

- Application to power performance testing
Outline

1. Introduction
2. Calibration of wind lidars
3. Wind field reconstruction
4. Power performance testing
Calibration of measuring systems

• **Metrology** (= science of measurements)

 international standards: JCGM (BIPM, IEC, ISO, etc)

 • VIM: international vocabulary of metrology

 • GUM: guide to uncertainty in measurements

• **Calibration** =

 operation providing as an end-result

 • a relation between measured values and reference ones
 (mathematical model, curve, table, etc)

 • associated measurement uncertainties

 • a correction of the indicated quantity value

• **Why?**

 Traceability to SI

 Uncertainty quantification

 “measurement values are meaningless without their associated uncertainty. The true value is unknowable”
Calibration of wind lidars: white vs. black-box methodology (1/2)

• **Black-box**
 – Direct comparison of reconstructed wind parameters

PROS: simple, limited knowledge required

CONS: lidar-specific, practical setup unrealistic, and ...

→ It simply does not work for nacelle lidars!
Calibration of wind lidars: white vs. black-box methodology (1/2)

- **White-box**
 - calibration of all the inputs of the Wind Field Reconstruction

PROS
- Low sensitivity to WFR assumptions
- Genericity
- Uncertainties on any wind characteristics (WFC)

CONS
- Longer process
- Need expert knowledge

Inputs:
- backscattered light, lidar scanning geometry, ...

LIDAR
- = white box

Outputs:
- reconstructed wind characteristic e.g. WS, WD, shear, ...
Generic calibration methodology

• Based on the original procedures for 2-beam nacelle lidars

• Further developed and tested with two different nacelle lidar systems

Avent 5-beam Demonstrator (5B-Demo): pulsed, step-staring

ZephIR Dual Mode (ZDM)
continuous wave, conically scanning

• Published in journal article + 2 detailed calibration reports
Generic calibration methodology
1) beam positioning quantities

- Step 1: calibration of beam positioning quantities
 - inclinometers (tilt, roll)
 - lidar geometry: cone or opening angles

➤ Procedures are lidar-specific
➤ We used hard target methods to detect beam position
Generic calibration methodology
2) calibration of LOS velocity

• Measurement setup, in Høvsøre (DK)
Generic calibration methodology
2) calibration of LOS velocity

Measurement setup, in Høvsøre (DK) - zoom

one beam of the Avent Demonstrator

ZephIR DM beam passage

cup

sonic

5m

8.9m

260m

5B-demo

ZDM
2) Calibration of LOS velocity
Method and data analysis

• **Main data**
 - **Cup**: horizontal wind speed V_{hor}
 - **Sonic**: wind direction θ
 - **Lidar**: LOS velocity V_{los}; tilt angle φ

 \[
 \text{Reference quantity } \quad V_{ref} = V_{hor} \cos \varphi \cos (\theta - LOS_{dir})
 \]

• **LOS direction evaluation**
 - fit of wind direction response (part 1)
 - Residual sum of squares process (part 2)

• **Comparison between**
 - Lidar-measured LOS velocity V_{los}
 - Reference quantity: pseudo-LOS velocity V_{ref}
 \(\Rightarrow\) derived from calibrated ref. instruments
2) Calibration of LOS velocity

Results (1/2)

Linear regressions on 10-min data

- **LOS 0**
 - N = 742
 - $y = 1.0069x$, $R^2 = 0.9991$

- **Bottom LOS**
 - N = 2140
 - $y = 1.0022x$, $R^2 = 0.9978$
2) Calibration of LOS velocity

Results (2/2)

Linear regressions on binned data

the calibration relation is obtained!
Uncertainty of LOS velocity

Method

- **GUM methodology:**
 - based on law of propagation of uncertainties
 - analytical method

- **Measurement model**

\[a \cdot V_{\text{ref}} = y = a \cdot V_{\text{hor}} \cdot \cos \phi \cdot \cos (\theta - \text{LOS}_{\text{dir}}) \]

- "Tree of uncertainties": GUM method applied to the \(V_{\text{los}} \) calibration

\[u_c, \gamma \]

\[u_a \]

\[u_{c, \theta_r} \]

\[u_{\theta_{los}} \]

\[u_{c, \theta_r} \]

\[u_{c, V_{\text{ref}}} \]

\[u_{\theta} \]

\[u_{c, V_{\text{hor}}} \]

\[u_{\text{cal}} \]

\[u_{\text{ope}} \]

\[u_{\text{mast}} \]

\[u_{\text{pos}} \]

\[u_{\text{inc}} \]
Uncertainty of LOS velocity

Results

• Expanded uncertainties \((k=2)\) vs. \(V_{\text{los}}\): in m/s and in %

\[U_{\text{exp}} \text{ increases linearly (m/s)} \]

\[\sim 3\% \text{ at } 4 \text{ m/s} \]

\[\sim 2\% \text{ at } 10 \text{ m/s} \]
Uncertainty of LOS velocity

Prevailing sources

\[a \cdot V_{\text{ref}} = y = a \cdot V_{\text{hor}} \cdot \cos \varphi \cdot \cos \left(\theta - \text{LOS}_{\text{dir}} \right) \]

\[u_{a} \]

\[u_{c,y} \]

\[u_{c,V_{\text{ref}}} \]

\[u_{c,\theta r} \]

\[u_{\theta_{los}} \]

\[u_{\theta} \]

\[u_{\varphi} \]

\[u_{c,V_{\text{hor}}} \]

\[u_{\text{cal}} \]

\[u_{\text{ope}} \]

\[u_{\text{mast}} \]

\[u_{\text{pos}} \]

\[u_{\text{inc}} \]

• Conclusions:
 ➔ the lidar \(V_{\text{los}} \) uncertainty is almost entirely inherited from the cup
 ➔ need to improve uncertainty assessment of cup anemometers
 OR
 ➔ need for new reference sensors
Outline

1. Introduction
2. Calibration of wind lidars
3. Wind field reconstruction
4. Power performance testing
Wind Field Reconstruction ...

- Combines LOS velocities measured in multiple locations

 - Needed to retrieve useful info: wind speed, direction, shear, ...
 - **Assumptions on the flow field** must be made

- **Simplest example**
 - two-beam nacelle lidar
 - horizontal homogeneity hyp.
 - analytical solution for wind speed and relative direction

- Not a good enough method for profiling nacelle lidars
And... searching for free stream wind speed

Modern turbines: $2.5D \sim 200-400m$

- Decorrelation WSpeed / power
- Hub height speed insufficient?
- $V_{2.5D}$ not really free wind ...

$$\infty \quad ??$$
Does this make it any easier?

Flow disturbed by turbine wakes!

(very) complex terrain

Perdigão.
credit: N. Vasiljevic
Model-fitting Wind Field Reconstruction

• Method is (not new...)

• need new “wind models” for profiling nacelle lidars, suitable for power performance testing
Wind model accounting for shear

- Use lidar measurements at 2.5 rotor diameters
- "static" model: stationarity assumed
- Assumes horizontal homogeneity and power law shear profile

Fits three wind characteristics

- wind speed V_0 (@H_{hub})
- relative wind dir. θ_r (yaw misalignment)
- shear exponent α_{exp}
Combined wind-induction model

- Use lidar measurements at multiple distances close to rotor
- Additionally assumes simple induction model:

(from actuator disk and vortex sheet theory)

\[
\frac{U(x)}{U_\infty} = 1 - a_{ind} \left(1 + \frac{\xi}{\sqrt{1 + \xi^2}} \right)
\]

- Fits four wind characteristics
 - Free stream wind speed \(V_\infty \) (@\(H_{hub} \))
 - Relative wind dir. \(\theta_r \)
 - Shear exponent \(\alpha_{exp} \)
 - Induction factor \(a_{ind} \)
Full-scale campaign: Nørrekræør Enge

- in Jutland, Denmark
- owner: Vattenfall
- 13 Siemens turbines of 2.3MW
Nørrekær Enge
nacelle lidars measurement trajectories

- Considered lines-of-sight:
 - 5B-Demo: all 5 LOS
 - ZDM: 6 LOS / azimuth sectors, ie. 3 pairs (in green)
Wind speed results
Mast comparison, WFR using the wind model

- horizontal speed estimated @hub height
- IEC “free sector”: $[110°, 219°]$

5B-demo
use the 5 LOS, @2 D_rot

\[
y = 1.0097x - 0.0345 \quad R^2 = 0.9848
\]

N_{pts} = 2815

ZDM
use 6 LOS, @2.5 D_rot

\[
y = 1.0192x - 0.1481 \quad R^2 = 0.9844
\]

N_{pts} = 2815
Wind speed results
Mast comparison, WFR using the wind-induction model

- horizontal speed estimated @ hub height and 2.5D_rot
- IEC “free sector”: [110°, 219°]

5B-demo: use the 5 LOS
4 dist., from 0.5 to @1.2D_rot

\[y = 0.9952x + 0.0408 \quad R^2 = 0.9877 \]

ZDM: use 6 LOS
3 dist., from 0.3 to 1.2D_rot

\[y = 0.9987x - 0.0582 \quad R^2 = 0.9885 \]
Wind speed evolution in induction zone

The simple induction model seems adequate! (enough)
The white-box methodology: where are we?

• Propagation of input uncertainties (V_{los}, inclination, etc)
 - Not possible with GUM
 - Use numerical methods instead: Monte Carlo simulations

• Get model uncertainties of all (fitted) wind characteristics
Monte Carlo methods for Uncertainty Quantification

- **Monte Carlo methods (MCM):**
 - Statistical techniques used to computationally solve physical or mathematical problems
 - Applications: numerical integration, optimisation, sensitivity or reliability analysis, uncertainty quantification (UQ)
 - References: [GUM supplement 1](#), [Cox (2006)](#)

- **Principles:**
 - Propagation of random inputs
 - By evaluation of a model for a large number of samples
 - Outputs characterized through their distribution
Uncertainties of WFC using Monte Carlo on free wind speed V_∞

- **Conclusions**
 - Linear variation vs speed
 - No variability with input yaw misalignment and shear
 - No significant difference with two-beam lidar results (using GUM)

$\theta_r = 4^\circ; \alpha_{exp} = 0.2; a_{ind} = nom.$

$V_\infty = 10\; ms^{-1}; \alpha_{exp} = 0.2; a_{ind} = nom.$

$V_\infty = 10\; ms^{-1}; \theta_r = 4^\circ; a_{ind} = nom.$

\Rightarrow essentially, the wind speed model uncertainty is the one of the cup anemometer used during the calibration in Høvsøre!
Outline

1. Introduction
2. Calibration of wind lidars
3. Wind field reconstruction
4. Power performance testing
Power performance testing
Method – NKE campaign

• Based on international standards IEC 61400-12-1 (2017 ed)
 – for the mast measurements

• Adapted to nacelle-based wind lidars:
 ➔ 5B-Demo and ZDM
 ➔ Wind field reconstruction with:
 1) wind model
 2) combined wind-induction model

• Considering hub height wind speed only
 – No rotor equivalent wind speed

• Derived results
 – Measured power curves
 – Power curve uncertainties
 – Annual Energy Production (AEP)
Measured Power curves (scatter)
WFR using wind-induction model

5B-demo

ZDM

Mast
Measured Power curves (binned)
WFR using wind-induction model
Power curve uncertainties: power, type A
WFR using wind-induction model

- Clear reduction of scatter in power curve
 ➞ nacelle lidars yield smaller type A (statistical) power uncertainty
Power curve uncertainties: combined WFR using wind-induction model

• Results are mostly dependent on type B wind speed uncertainty
 ➔ very sensitive to the “terrain uncertainty”
 ➔ lidar uncertainties are smaller only due to this component...

![Graph showing combined uncertainty versus normalised hub height wind speed. The graph includes three datasets: cup, A5B, and ZDM.]
Annual Energy production

- Derived as percentage of AEP using "mast power curve"
- 3 methods:
 - Wind model
 - Combined wind-induction
 - Wind speed estimated at 2.5D
 - Fitted free stream wind speed (V_∞)
Overall conclusions

- **Calibration of wind lidars** ✓
 - the white-box methodology successfully applied
 - is now the preferred technique by wind industry!
 - Lidar LOS velocity uncertainty \approx ref. anemometer speed

- **V infinity is found ! ✓**
 - solution: combined wind-induction WFR model and lidar measurements close to rotor
 - allows to estimate free stream wind speed

- **For power curve measurements:** nacelle-based lidars are
 - at least as accurate as meteorology masts
 - (offshore) likely to replace them systematically ✓
 - to be included in next generation IEC standards?
Future work

• Testing similar methods in complex terrain
 – Hill of Towie
 – Ogorje

• Standardisation work on nacelle lidars for power perfo.

 IEC 61400-50-3 ED1
 Wind energy generation systems - Part 50-3: Use of nacelle mounted lidars for wind measurements (proposed project number 61400-50-3)

• Optimisation of nacelle lidar trajectory
 – Needs a fully implemented lidar simulator
 – Needs validated CFD tools

• Development of model-fitting wind field reconstruction for:
 – Nacelle lidar measurements in wakes
 – Ground-based, scanning and floating lidars

UniTe campaigns, ongoing analysis
Thanks for your attention!

And many many others!!
Acknowledgements

My Ph.D. project formed part of the UniTTe project (www.unitte.dk) which is financed by Innovation Fund Denmark.
Preparing for questions

Calibration of wind lidars
Publications

- **Publications:**

- **DTU E-0086 report** → generic methodology
- **DTU E-0087 report** → detailed procedure 5B-demo
- **DTU E-0088 report** → detailed procedure ZDM
- **Journal paper**
 - *Remote Sensing of Wind Energy* (special issue)
 - methodology, results, discussions, 2-beam example
 - doi: 10.3390/rs8110907
Lidar

Light Detection And Ranging: “a radar using light”

Remotely measuring: from some meters to >10 km away

Principles of coherent Doppler wind lidars

1. **Processing of raw signal** → **Doppler spectrum**
2. **Estimate wind velocity along beam path** → **Line-Of-Sight (LOS) velocity** V_{los}
3. **Combine V_{los} measurement in multiple locations** → **reconstructed wind field characteristics (WFC): speed, direction, shear, etc**
2) Calibration of LOS velocity

Data analysis (1/2)

- **LOS direction evaluation (part 1)**
 - Cosine / rectified cosine fitting to wind direction response
 - The lidar LOS is normalised by the horizontal speed
 - Gives a first good estimation of LOS direction in sonic CS

![Graphs showing LOS direction analysis for 5B-demo and Bottom LOS](image-url)
2) Calibration of LOS velocity
Data analysis (1/2) – RSS process

- **LOS direction evaluation (part 2)**
 - Projection angle range: $\pm 1^\circ$ to cosine fitted LOS_dir
 - Linear reg. each 0.1°
 - $\text{LOS dir} = \text{min parabola}$

![Graph showing LOS 0 and Bottom LOS](image-url)
Calibration results

• Summary:
 – lidar-measured LOS velocity: error of $\sim 0.5 - 0.9\%$
 – excellent agreement with the reference quantity V_{ref}: $R^2 > 0.9998$
 – LOS direction method provides robust results $(\pm 0.05^\circ)$

<table>
<thead>
<tr>
<th>Lidar</th>
<th>LOS</th>
<th>θ_{los}</th>
<th>a</th>
<th>R^2</th>
<th>N pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>5B</td>
<td>LOS 0</td>
<td>286.03°</td>
<td>1.0058</td>
<td>0.9999</td>
<td>742</td>
</tr>
<tr>
<td></td>
<td>LOS 1</td>
<td>285.99°</td>
<td>1.0072</td>
<td>0.9999</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>LOS 2</td>
<td>285.99°</td>
<td>1.0084</td>
<td>1.0000</td>
<td>1087</td>
</tr>
<tr>
<td></td>
<td>LOS 3</td>
<td>286.06°</td>
<td>1.0090</td>
<td>0.9999</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td>LOS 4</td>
<td>285.99°</td>
<td>1.0059</td>
<td>1.0000</td>
<td>1508</td>
</tr>
<tr>
<td>ZDM</td>
<td>179° – 181° azimuth</td>
<td>287.44°</td>
<td>1.0050</td>
<td>0.9998</td>
<td>2140</td>
</tr>
</tbody>
</table>
Uncertainty assessment: how to combine components?

• **GUM methodology**: analytic method
 1) Define measurement model: \(y_m = f(x_1, x_2, \ldots, x_n) \)
 2) Law of propagation of uncertainties:

\[
U_c = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y_m}{\partial x_i} \cdot u_{x_i} \right)^2}
\]

for uncorrelated inputs \(x_i \)

3) Expanded uncertainty with coverage factor \(k \)

\[
U_{exp} = k \cdot U_c
\]

typically, \(k=2 \) corresponds to 95% confidence interval
What are the uncertainty sources?

- **Reference instruments uncertainties**
 - HWS (IEC 61400-12 procedure for cups)
 - Wind tunnel calibration uncertainty
 \[
 u_{cal} = u_{cal} 1 + \frac{0.01}{\sqrt{3}} \cdot \langle HWS \rangle
 \]
 - Operational uncertainty
 \[
 u_{ope} = \frac{1}{\sqrt{3}} \cdot \text{cup class number} \cdot (0.05 + 0.005 \cdot \langle HWS \rangle)
 \]
 - Mounting uncertainty
 \[
 u_{mast} = 0.5\% \cdot \langle HWS \rangle
 \]
- Wind direction, from calibration certificate of sonic anemometer:
 \[
 u_{WD} \approx 0.4^\circ
 \]
What are the uncertainty sources?

- **Calibration process uncertainties**
 - LOS direction uncertainty
 \[u_{LOS \, dir} = 0.1^\circ \]
 - Uncertainty of tilt inclination angle
 \[u_\varphi = 0.05^\circ \]
 - Beam positioning uncertainty: \(u_H = 10 \, cm \), shear \(\alpha_{exp} = 0.2 \)
 \[u_{pos} = \alpha_{exp} \cdot \frac{u_H}{H} \cdot \langle HWS \rangle \approx 0.23\% \cdot \langle HWS \rangle \]
 - Inclined beam and range uncertainty
 \[u_{inc} = 0.052\% \cdot \langle HWS \rangle \]

"how the probe volume affects the RWS estimation when the beam is inclined" (see model in DTU report E-0086, Annex A)
Preparing for questions

- Wind Field Reconstruction
Publications

- Publications:

Research articles

Wind Field Reconstruction from Nacelle-Mounted Lidars Short Range Measurements

Antoine Borraccino¹, David Schlipf², Florian Haizmann², and Rozenn Wagner¹

¹DTU Wind Energy, Roskilde, Denmark
²Stuttgart Wind Energy, University of Stuttgart, Germany

Scientific article: wes-2017-10/
Full-scale campaign: Nørrekrær Enge

- in Jutland, Denmark
- owner: Vattenfall
- 13 Siemens turbines of 2.3MW
Wind speed results: summary table

- Overestimation of 1-1.5% with the wind model
- Better performance of wind-induction model using the lidars’ short-range measurements
- Lidar-to-lidar: 5B-Demo about 0.5-1% higher than ZDM
Wind speed results: summary table

<table>
<thead>
<tr>
<th>Data filtering</th>
<th>Reconstruction case</th>
<th>Forced linear regressions results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Case</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Disjoint datasets: similar observations
- Increased number of valid data points (2-3x more)
- R^2 enhanced slightly
Wind speed results: summary table

<table>
<thead>
<tr>
<th>Data filtering</th>
<th>Reconstruction case</th>
<th>Forced linear regressions results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case</td>
<td>Direction sector</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$[93°, 123°]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>$[93°, 123°]$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>$[110°, 219°]$ (IEC free sector)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Better agreement between lidar and mast
- Much larger scatter (“signal decorrelation”)
- Still 5B-Demo above ZDM (about 0.5%)
Wind speed results: summary table

<table>
<thead>
<tr>
<th>Data filtering</th>
<th>Reconstruction case</th>
<th>Forced linear regressions results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Input measurement ranges</td>
</tr>
<tr>
<td>Case</td>
<td>Direction sector</td>
<td>Dataset</td>
</tr>
<tr>
<td>1</td>
<td>([93^\circ, 123^\circ])</td>
<td>Joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>([93^\circ, 123^\circ])</td>
<td>disjoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>([110^\circ, 219^\circ]) (IEC free sector)</td>
<td>Joint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>([110^\circ, 219^\circ]) (IEC free sector)</td>
<td>disjoint</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Yaw misalignment results:
WFR using the *wind-induction model*

- Wind sector: $[110^\circ, 219^\circ]$ (joint datasets)
- "Ref." yaw misalignment from spinner anemometer

- Higher scatter with lidars than spinner
- "mean" yaw misalignment: $\approx -3^\circ$
- The two nacelle lidars seem to provide similar results

5B-demo: 4 dist, from 0.5 to @1.2D_rot

Spinner anemometer

ZDM: 3 dist. From 0.3 to 1.2D_rot
Shear exponent results:
WFR using the wind-induction model

• Wind sector: [110°, 219°] (joint datasets)
• “Ref.” shear exponent: from mast, using cups at 80 and 57m agl

→ Slight overestimation vs. mast ➔ Similar results between the two lidars
Induction factor results:
WFR using the wind-induction model

- Wind sector: \([110^\circ, 219^\circ]\) (joint datasets)
- “Ref.” induction factor: \(C_T\) from “HAWC2” simu, \(a = 0.5 \cdot (1 - \sqrt{1 - C_T})\)

5B-demo: 4 dist, from 0.5 to @1.2D_rot

ZDM: 3 dist. From 0.3 to 1.2D_rot
LOS velocity fitting residuals

- **Definitions:**
 - V_{los} and \hat{V}_{los} are column vectors of length = N meas. points (e.g. 5B-Demo = 4 dist*5 los = 20; ZDM = 3 dist*6 los = 18)
 - “bias” = $V_{los} - \hat{V}_{los}$; “error”: = $abs(V_{los} - \hat{V}_{los})$
LOS velocity fitting residuals

- **Computed stats:**
 - M: mean, N: normalised; F: fractional;
 - S: squared; R: root; SS: sum of squares
 - **MB, ME, NMB, NME, MFB, MFE, SSE, MSE, RMSE, NMSE**
V_los fitting residuals: mean bias

WFR using the wind-induction model

- Wind sector: [110°, 219°] (joint datasets)

- MB show very low values;
- Histogram centered on zero: the used model is “unbiased”
V_los fitting residuals: mean bias
WFR using the wind-induction model

- Wind sector: [110°, 219°] (joint datasets)

- RMSE values between 0 and 0.25 m/s
- Similar distributions for both lidars, with a slightly larger mean for ZDM

5B-demo
4 dist. from 0.5 to @1.2D_rot

ZDM
3 dist. from 0.3 to 1.2D_rot

RMSE values between 0 and 0.25 m/s
Similar distributions for both lidars, with a slightly larger mean for ZDM
A simple induction model

- Derived from the Biot-Savart law
 - see *The upstream flow of a wind turbine: blockage effect*
 - two parameters: induction factor a, free wind speed U_∞

$$\frac{U}{U_\infty} = 1 - a \left(1 + \frac{\xi}{\sqrt{1 + \xi^2}} \right), \text{ with } \xi = \frac{x_W}{R_{rot}}$$

[Graphs showing non-dimensional wind speed V_H/V_∞ vs. distance from rotor plane $[\text{in } D_{rot}]$.]

5B-demo

ZDM
Simple induction models

- One- or two-dimensional?
Preparing for questions
-
propagation of uncertainties with Monte Carlo methods
\[\bar{y}_i = y_t + \epsilon_e = g(x_i + \epsilon_x, \bar{\theta}) + \epsilon_g + \epsilon_a \]

\(\bar{y}_i \) is a measured value of \(g \);
\(\epsilon_x \) represents the error related to the inputs;
\(\epsilon_g \) is the random error due to the model uncertainty;
\(\epsilon_a \) characterises the error due to the model inadequacy
\(\epsilon_e \) is the error between observations \(\bar{y}_i \) (measured) and the true value \(y_t \);

Reproduced from:
Huard, D., and A. Mailhot (2006),
A Bayesian perspective on input uncertainty in model calibration: Application to hydrological model “abc”,
Uncertainties of WFC yaw misalignment θ_r

- Decreasing vs speed: consistent with NKE campaign results!
- Values are very (too ??) low: due to assumed high correlation between V_{los}
- No variability with input yaw misalignment and shear

$\theta_r = 4^o; \alpha_{\text{exp}} = 0.2; a_{\text{ind}} = \text{nom.}$

$V_\infty = 10 \text{ ms}^{-1}; \alpha_{\text{exp}} = 0.2; a_{\text{ind}} = \text{nom.}$

$V_\infty = 10 \text{ ms}^{-1}; \theta_r = 4^o; a_{\text{ind}} = \text{nom.}$
Uncertainties of WFC shear exponent α_{exp}

- Decreasing vs speed
- No variability with input yaw misalignment
- Increasing with shear
- Order of magnitude: 5-10%

$\theta_r = 4^\circ$; $\alpha_{exp} = 0.2$; $a_{ind} = nom.$

$V_\infty = 10\, ms^{-1}$; $\alpha_{exp} = 0.2$; $a_{ind} = nom.$

$V_\infty = 10\, ms^{-1}$; $\theta_r = 4^\circ$; $a_{ind} = nom.$
Uncertainties of WFC induction factor a_{ind}

- Decreasing vs speed
- No variability with input yaw misalignment and shear
- Much higher for 5B-Demo than ZDM: why??
- Order of magnitude:
 - 5% at high CT (low spd), up to 20% at low CT (high spd)

$\theta_r = 4^\circ; \alpha_{exp} = 0.2; a_{ind} = \text{nom.}$

$V_\infty = 10 \text{ ms}^{-1}; \alpha_{exp} = 0.2; a_{ind} = \text{nom.}$

$V_\infty = 10 \text{ ms}^{-1}; \theta_r = 4^\circ; a_{ind} = \text{nom.}$
MCM convergence
Wind speed uncertainties (k=2)
MCM convergence

Yaw misalignment uncertainties (k=2)
Shear exponent uncertainties \((k=2)\)
Induction factor uncertainties (k=2)
Preparing for questions
-
power performance testing
Measured Power curves (scatter)

WFR using wind model

5B-demo

ZDM

Mast
Measured Power curves (scatter)

WFR using **wind model**

![Graph showing measured power curves with different markers and lines for normalized hub height wind speed]

- ref
- cup
- A5B
- ZDM
Power curve uncertainties: power, type A
WFR using wind model
Power curve uncertainties: combined WFR using wind model