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Power performance testing: where are we? =

e New standards: IEC 61400-12-1:ed2 (2017)

e What’s new?
— mast and/or RSD e.g. ground-based lidar

— hub height spd + shear measurement (/\}
or rotor equivalent wind speed ‘:}&
— (somewhat) more thorough power curve *\ g)

uncertai Nty assessment

eBut STILL PR
— no nacelle lidar
(coming Iin IEC 61400-50-3)
— measurements between
2D, and 4D, ., from the turbine
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https://webstore.iec.ch/publication/26603
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In my PhD ... the story

i

1)“Generic methodology for
field calibration of nacelle-
L’i?r?g%ub;measurfn% based wind lidars” (link)

I DTU wing Energy

2)“Wind field reconstruction
from nacelle-mounted lidar

short-range measurement”
(link to WES)

3)Uncertainty propagation in
_ . . WFR models (using Monte
Link to thesis on DTU’s site

Carlo methods)

4)Applied to power pertf.

DTU Wind Energy, Technical University of Denmark
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http://www.mdpi.com/2072-4292/8/11/907
http://www.wind-energ-sci.net/most_downloaded.html
http://orbit.dtu.dk/en/publications/remotely-measuring-the-wind-using-turbinemounted-lidars-application-to-power-performance-testing(f377ad90-1996-4093-ad27-4f7fedf51389).html
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Searching for free stream wind speed

i

—

Modern turbines: 2.5D — 200-400m

—
—

g — —
o

e Decorrelation WSpeed / power e 2.5D not really free wind ...
* H, , speed sufficient?
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Model-fitting wind field reconstruction for
power performance testing

e Several possibilities for lidar measurements:

i

1) 2.5D distance
fitting wind speed + |
direction + shear to |
lidar-measured
LOS velocities

Multiple distances
close to rotor
Induction
Integrated in wind
field reconstruction

Extrapolation of true” free stream wind speed

5 DTU Wind Energy, Technical University of Denmark



Lidar measurements @ multi-dist (near flow) -

Mast comparison, Ngrrekaer Enge campaign, 7 months
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Measured power curves — 10-min data

5B-Demo

using fitted V
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Using nacelle lidar measurements close to turbine rotor!

7 DTU Wind Energy, Technical University of Denmark

1.4



Measured power curves — binned data

5B-Demo

using fitted V,
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Uncertainty quantification in WFR models -

i

e Models are always wrong
= framework for UQ

e The model-fitting WFR
approach is too
sophisticated for using

X . .
/ analytical uncertainty

Input data

&y propagation (“GUM”)
/ e Instead we can use
Trueinput x Model  Numerical techniques:
True process (%,0.) >
True output y g\ Ym ll):
/ Monte Carlo methods
\ €4 "Model uncertainty
€y +

\ % &, Model inadequacy

Output data

9 DTU Wind Energy, Technical University of Denmark



Monte Carlo UQ results for combined
wind-induction WFR model
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Monte Carlo UQ results for combined
wind-induction WFR model
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Conclusion

the model uncertainty on V
estimated by the nacelle lidars
Is negligibly different from the
wind speed uncertainty of the
reference anemometer used
during the LOS velocity
calibration campaign




Power curve uncertainty assessment (1/74) -

i

e The procedure is based on the new standards IEC
61400-12-1:ed2 (2017)

=>with some deviations:
no “method” uncertainty considered (related to REWS,
and shear, veer, Tl normalisation, etc)

e Method to estimate the cat. B wind speed unc. for the
lidars combines the model uncertainty (Monte Carlo)
with fitting residuals (inadequacy)

e The “flow distortion uncertainty”
= 2% for the cup (no site cal, default IEC for 2.5D dist)

= 1% for the lidars: fair enough since measurements taken
close to the rotor (about 1D, ;)

12 DTU Wind Energy, Technical University of Denmark
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Power curve uncertainty assessment (2/74) -
cat. B wind speed uncertainty

i

0.4 | ' | | | e The reduction of
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higher for ZDM than 5B-
Demo explain the
difference
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Power curve uncertainty assessment (374) -
cat. A power uncertainty

Lower scatter for the measured power curves with the
lidars = lower cat. A uncertainty on power output

i
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Power curve uncertainty assessment (4/74) o-
combined power curve uncertainty (k=1)

i
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Take-aways

V. Is found!

e The solution: measurements close to rotor, within the induction zone,
at multiple distances, e.g. with nacelle lidars

=2 no need for more powerful lasers!

i

e Wind Field Reconstruction algo. provide estimates comparable to
classic mast instrumentation (< 1% difference)

e Power curves in flat terrain verified accurately, reduced scatter
(as usual with nacelle lidars)

=>extinction of the “met. mast species” is coming... the dinosaurs of
wind measurements

= next generation of IEC standards work ongoing (-50-3)
=»some studies on PCurve uncertainty assessment desirable

Coming soon in UniTTe:

— Complex terrain: demonstration of nacelle lidar short-range
measurement technique in two campaigns
=> Hill Of Towie, Scotland (RES), ZDM & 4-beam Wind Iris
= Ogorje, Croatia (Akuo Energy), with a 4-beam Wind Iris

16 DTU Wind Energy, Technical University of Denmark



Thanks for your
attention!

DTU Wind Energy

Department of Wind Energy
Ph.D. Thesls

Remotely measuring the wind
using turbine-mounted lidars

Application to power performance festing

More info:
= website www.unitte.dk
= contact borr@dtu.dk

Antoine Borraccino
DTU

Rise campus. Roskilde, 2017 -4
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Model-fitting Wind Field Reconstruction for
power performance testing

e Several possibilities for lidar measurements:

i

1) 2.5D distance S SR

fitting wind speed +  © oo
direction + shear to : TR S =
lidar-measured R 5 '
LOS velocities 3

100 | 0 ) X [m]

19 DTU Wind Energy, Technical University of Denmark
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Wind speed evolution within the induction +-

i

Process:

1) lidar-estimated H,, , speed @each distance adimensionned
by lidar-estimated V, (for each 10min period)

2) Averaging of non-dimensional spd by V, bins of 0.5 ms
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A simple induction model

e Derived from the Biot-Savart law
—See The upstream flow of a wind turbine: blockage effect
—two parameters: induction factor a, free wind speed U,

v _ . 3 - _ 2w
o 1 a(l + sz), with & —

e \What does the induction looks like in NKE?

1.05

Black: theoretical, a = 0.3

Colored lines: different 10min
periods

0.95

Free HWS adim [-]

=>Fitting a and U, should be
possible
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| | i
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AEP results

e |[EC -12-1 methodology

e extrapolated AEPs
0.5 m/s bin width

i

« Relative difference in % of cup-based AEP
e Rayleigh avg speed = 8 m/s

Lidar
measurements

@2D (5B-Demo)
@2.5 D ZDM) (case 1)

multiple distances

@ 90 (case 2)

Avent 5-Beam

Wspeed difference: +0.59%

Wspeed difference: +0.52%

demonstrator lidar

-0.8%

-0.9%

Wspeed difference: +0.32%

Wspeed difference: -0.27%

Zephir Dual Mode
lidar

-0.3%

+0.5%

= AEP estimations as good with the “multi-distances” method as
with the 2.5D (<1.5% difference)

22 DTU Wind Energy, Technical University of Denmark




A AEP [in % of cup]
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AEP results
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Model-based wind field reconstruction

e Doppler wind LiDaRs do not...

...measure wind speed, wind direction, shear, ...
see Hardesty, 1987 (wonderful description of lidar principles)

e They:
@ —only measure LOS velocities
—estimate/reconstruct wind field characteristics (WFC)

: Lidar E
| measurements !
wind model /\.
+ lidar model inclination  line-of-sight
+ initial WFCvalues angles velocities Vs
. wind m I
1 Fit to measurement d mode
(iterative process)
12 | calculation : 2l
Simulation of simulated p % fitted Wind field reconstructed
= of error . . -
measurement V WEFC estimation wind parameters
los update WFC
updated
WEFC locations of interest

24 DTU Wind Energy, Technical University of Denmark
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Does this make it any easier?

e In complex terrain:

—any “free stream” wind speed idea?

—site calibration? Maybe
e Offshore:

—mast expensive

—free wind may not be measurable due to wakes
25 DTU Wind Energy, Technical University of Denmark



Monte Carlo methods In brief
(dummy example)

i

INPUTS DISTRIB. OF ERRORS
OUTPUTS DISTRIB.

K,/ OF ERRORS

<l R,,=031 R, =078
| —
/\; R,, = 0.175

—
5 R, =0.01
X ks W 3
i Y,
X1 x2 X3
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Power curve in complex terrain

wind-induction model @4 dist

scatter

i

e Mast: top cup wind spd, corrected with SC (experimental)

e Lidar: free stream wind spd V., no correction

1.2 .
1 gy
u.':."",. -
'."_":;{"' .
0.8F S
:;;:\.
L
06 -','r".'
"1.:
4
0.4+ .
02+ ‘.é'_:l". i
andt® L
lﬂ,;ﬁ'- Lidar (4B WI1)
0 .
_02 1 1 | 1 | 1
0.2 0.4 0.6 0.8 1 1.2 14 1.6
hor. Wind speed / U steq ] (corr SC)

0.2

1.2

0.8r

0.6

04r

0.2r

cup

Mast cup

0.2

0.4

0.6

=» Clear scatter reduction in lidar PCurve

27 DTU Wind Energy, Technical University of Denmark

0.8

1

1.2 1.4 1.6

hor. Wind speed / U . . [-] (corr SC)



Power curve in complex terrain
wind-induction model @4 dist
binned
e Mast: top cup wind spd, corrected with SC (experimental)
e Lidar: free stream wind spd V., no correction
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