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Dynamics of the interaction between the rotor and

the induction zone
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Denmark
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Abstract. Traditionally met masts are used for power and load verifications. They are
normally placed 2-4 rotor diameters ahead of the turbine. However in complex terrain this
can lead to complex analysis of the effect of the terrain on the flow field. A nacelle mounted
lidar can provide a better tool for wind field measurements in all terrains. Provided that the
measurement is close enough to the rotor disc, the uncertainty in the flow field measurement
can be reduced significantly. Therefore any complex terrain calibration and changes in the
wind direction can be avoided. However, close distance lidar measurements are affected by the
presence of the wind turbine, due to its induction zone. In this work, the dynamic coupling
between changes in the wind turbine operating point and the velocities inside the induction
zone is studied. Reynolds-Averaged Navier-Stokes (RANS) simulations are used to investigate
this interaction. Thereafter, system identification is used to fit first order dynamic models to
the simulation results. The parameters of the model are given for the turbine induction zone.
These results possibly reduce the uncertainty in lidar measurements, arising from wind turbine
blockage.

1. Introduction
Lidar sensors prove to be very helpful in the wind energy industry for different reasons. They
can be used for yaw corrections [3], pitch control [12] and power and loads verifications [2].
Nevertheless, there are different issues with lidar measurements. One of the issues is the difficulty
of wind speed measurements very close to the rotor disc (e.g. less than one rotor diameter).
Close range measurements are being used in order to minimize the uncertainty due to the terrain
etc. on the wind field measurements. In this case the effect of the induction zone of the rotor
is prominent in the measurements. In [14] the authors have used SOWFA [1] for Large Eddy
Simulations (LES) of a wind turbine model in a wind field in order to investigate the effect of the
induction zone on lidar measurements. The authors have compared the simulation measurements
in terms of mean wind velocity and turbulence intensity in the steady state conditions. Another
investigation of the induction zone effect is presented in [13] where the wind field in the induction
zone of a Vestas V27 is investigated.

In this work we address the problem with close range measurements where the lidar
measurements are close enough to be affected by the induction of the rotor. Specifically, we
will investigate the dynamic effect of the induction zone on the lidar measurements. We will
show that changes in the operating point of the turbine affects the wind speed in the induction
zone. Moreover, we will find the appropriate dynamic model that represents this behavior. The
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results of this work can be used to reduce the uncertainty in the wind speed measurements close
to the rotor disc.

2. Simulation setup
2.1. Numerical setup
The simulations are performed solving the incompressible transient Reynolds Averaged Navier-
Stokes (RANS) equations with uniform non-turbulent inflow, at a Reynolds number of 1.0×108

with respect to the rotor radius (R). The finite volume code EllipSys3D solves the RANS
equations over a discretized block-structured domain [15, 8, 9] with collocated variables. Solving
convective terms using the QUICK scheme [4] and the SIMPLE method [10] for the pressure-
linked terms of the Navier-Stokes equations. A modified Rhie-Chow algorithm [11, 16] avoids
decoupling velocity and pressure in the presence of discrete body forces originating from an
actuator disc (AD). The effect of turbulence on the mean flow is accounted for using Menters
k−ω shear-stress transport turbulence model [6]. The turbine rotor is represented by an actuator
disc. The loading on the rotor is uniform and only acting normal to the disc. The simulations
are converged at an initial thrust coefficient CTi before at a specific point in time t0 a change
∆CT is initiated. The CT of the rotor at a time t is given by:

CT (t) =

{
CTi for t ≤ t0

CTi + ∆CT

(
1 − e−

t−t0
τ

)
for t > t0

(1)

where τ determines the speed with which the change is applied. The time step ∆t had its upper
limit at 0.04 set by the CFL number. Furthermore the ratio of the maximal gradient of CT (t)
to ∆t was kept constant in-between the simulations:

max (dCT /dt)

∆t
=

∆CT /τ

∆t
= constant (2)

2.2. Turbine model
The turbine rotor was represented by an actuator disc. The loading on the rotor was uniform
and only acting normal to the disc. The normal force thus acting over a sectional area ∆A of
the actuator disc is:

FN =
1

2
ρ∞V

2
∞CT∆A (3)

Only the thrust coefficient CT was changed between simulations. Note that approximating the
influence of a rotor with only normal forces corresponds to the ideal case where the tip speed
ratio tends to infinity.

2.3. Numerical domain
A box domain with side lengths of 25 radii (R) minimises the impact of domain blockage
(π/252 = 0.5%). It contains a finely meshed box that surrounds the actuator disc located
at its center as shown in figure 1. The rotor radius is discretized with 33 grid points giving
an inner mesh spacing, which previously yielded sufficiently accurate results [7]. From the fine
mesh the grid grows hyperbolically outwards. The frontal and side faces of the domain are set
as Dirichlet boundaries, whereas and Neumann boundary condition is applied to the rear.

3. Modeling of the Dynamics
In this work, the dynamic effect of the rotor on the upstream induced velocities is modelled
via a transfer function. The transfer function describes how the induced velocity respond to a
step change in the rotor loading. The transfer function was found to be well represented by the
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Figure 1: The numerical domain containing the actuator disc with uniform inflow. All
dimensions are given in turbine radii.
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Figure 2: Probe points relative to the wind turbine, the wind turbine is seen from the top

following first order model:

H(s) =
k(x, y)

T (x, y)s+ 1
(4)

The two parameters to be identified are the gain of the system k(x, y) and the time constant
T (x, y). These parameters are functions of space with the spatial coordinates x and y defined
as shown in Figure 2. In order to illustrate the effect a change in the gain and time constant
have on the transfer function, Figure 3 compares the response of the function with the following
parameters:

H1(s) =
−0.1347

1.4610s+ 1
(5)

H2(s) =
−0.0796

1.4610s+ 1
(6)

H3(s) =
−0.1347

1.8957s+ 1
(7)

H1 and H2 have the same time constant, but different gains. As it is seen in figure 3 they
converge towards their respective steady state values with the same rate. However, the steady
state values are different due to the different gains. H1 and H3 on the other hand converge to
the same steady state value with different rates. This is because they have the same gain, but
different time constants.

4. Results
System identification [5] is used to find an appropriate model that fits the dynamic changes in
the wind speed at the probe point (x, y), as the thrust coefficient changes. Figure 4 includes a
sample response used for the system identification and the output of the identified model. This
figure shows the changes in the wind speed at (x, y) = (0.5R, 0) as a response to changes in
the CT for ∆CT = 0.8. The changes are shown as ∆V (t) = V (t) − V0, in which V (t) is the
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Figure 3: Step response comparison of three systems with different gains and time constant

Figure 4: Changes in the wind speed as a result of changes in the CT value in time, solid-blue
is the predictions from CFD and red-dashed is the identified system

wind speed as a function of time and V0 is the initial wind speed. System identification [5] is
used to find an appropriate model that fits the dynamic changes in the wind speed at the probe
point (x, y), as the thrust coefficient changes. Figure 4 includes a sample response used for the
system identification and the output of the identified model. This figure shows the changes in
the wind speed at (x, y) = (0.5R, 0) as a response to changes in the CT for ∆CT = 0.8. The
changes are shown as ∆V (t) = V (t)−V0, in which V (t) shows the wind speed in time and V (0)
is the wind speed at initial time. The same identification procedure is used for the parameters
of the transfer functions for the whole grid of x−y. The contour curve of the two parameters
are given in figures 5 and 6. Figure 5 shows as x increases the amplitude of the gain of the
transfer function decreases. This is natural, as when the probe point moves away from the rotor
disc, the effect of the induction zone is reduced. Figure 6 shows that the dynamics, modeling
changes in the CT, become slower as x increases. The figure shows that close to the turbine fast
changes in the CT have a prominent effect on the wind speed. As the measurement point moves
away from the turbine, the fast changes are filtered and only slow changes in the CT value can
be observed.

5. Conclusions
In this paper the dynamic effect of changes in the operating point of the wind turbine on the
wind speed measurements using lidars is investigated. It is observed that changes in the turbine
operating point affect the upstream wind speed, and that the effect occurs dynamically. First
order systems are used to capture this interaction. For each probe point or lidar measurement
point upstream the wind turbine a model of the dynamic effect is identified and parameters of
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Figure 5: Gain of the transfer function k(x, y)
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Figure 6: Time constant of the transfer function T (x, y)

the model determined. The results can be used to correct for the dynamic effect of the induction
zone on the wind speed measurements. Furthermore, it allows to improve the estimation of the
free stream wind speed by lidar measurements close to the rotor disc.
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