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Power performance testing: where are we? -

e New standards: IEC 61400-12-1:ed2 (2017)

e What’s new?
— mast and/or RSD e.g. ground-based lidar
— hub height spd + shear measurement ‘/ Fa
or rotor equivalent wind speed v

— (somewhat) more thorough power curve ¥ %).
uncertainty assessment |

eBut STILL I
— no nacelle lidar
— measurements between
2D, and 4D, from the turbine
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https://webstore.iec.ch/publication/26603

In my PhD ... the story

e Submitted last week!
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In my PhD ... the story

HE

e Submitted last week!

1) “Generic methodology for
field calibration of nacelle-
based wind lidars” (link)

’ DTu Wing Ene'_gy

Garmotely measuri 2)“Wind field reconstruction

ne-mo .
from nacelle-mounted lidar
short-range measurement”

(link to WES)

3)Uncertainty propagation in
WFR models (using Monte
Carlo methods)
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http://www.mdpi.com/2072-4292/8/11/907
http://www.wind-energ-sci.net/most_downloaded.html

Searching for free stream wind speed

Modern turbines: 2.5D — 200-400m

—

o — —

=

e Decorrelation WSpeed / power
* H, , speed sufficient?
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e 2.5D not really free wind ...



Model-fitting Wind Field Reconstruction for
power performance testing

e Several possibilities for lidar measurements:

i

1) 2.5D distance
fitting wind speed + I — | |
direction + shearto =~ |
lidar-measured
LOS velocities

100 R ' X [m]
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Model-fitting Wind field reconstruction for
power performance testing

e Several possibilities for lidar measurements:

i

1) 2.5D distance
fitting wind speed + e

direction + shear to | ______ .....
lidar-measured ' ; :
LOS velocities

Multiple distances

close to rotor -:
induction integrated| §'°

In wind field

reconstruction
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[m.s'1]

hor

5B lidar-reconstructed V

Lidar measurements @ multi-dist (near flow) -
Mast comparison, Ngrrekeer Enge campaign, 7 months -

ZDM: use 6 pts
@[0.3 ; 1.0 ; 1.25] D,

5B-Demo: use the 5 LOS
@[0.5; 0.75 ; 1.0 ; 1.15] D,

HWS estimated @hub height and @2.5D distance
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Non-dimensional wind speed VHNoc- [-]
o
o

Wind speed evolution within the induction <

i

Process:

1) lidar-estimated H, ,, speed @each distance adimensionned
by lidar-estimated V, (for each 10min period)

2) Averaging of non-dimensional spd by V, bins of 0.5 ms
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Measured power curves — 10-min data
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Measured power curves — binned data
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Uncertainty quantification in WFR models -

i

e Models are always wrong
= framework for UQ

e The model-fitting WFR
approach is too complex for

/ g using analytical uncertainty
£y propagation (“GUM”)

/ - We instead can use
numerical techniques:

Trueinput x ) Model = e.g. Monte Carlo

True process ~
methods

True output y 9(x,0m)

\ /

€4 "Model uncertainty
€y +

\ % &, Model inadequacy

Output data

Input data
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Monte Carlo methods in brief
(dummy example)

i

INPUTS DISTRIB. OF ERRORS
OUTPUTS DISTRIB.

/7 OF ERRORS

<l R,,=031 R, =078
| —»
/_\; R,,=0.175

p R23 =001
™ e,
>< iR
X1 X2 XS
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Monte Carlo UQ results for combined
wind-induction WFR model
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Monte Carlo UQ results for combined
wind-induction WFR model
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Conclusion

the model uncertainty on V.
estimated by the nacelle lidars
IS negligibly different from the
wind speed uncertainty of the
reference anemometer used
during the LOS velocity
calibration campaign




Power curve uncertainty assessment (1/74) --

i

e The procedure is based on the new standards IEC
61400-12-1:ed2 (2017)

=2>with some deviations: no “method” uncertainty
considered (related to REWS, and shear, veer, TI
normalisation, etc)

e Method to estimate the cat. B wind speed for the lidars
combines the model uncertainty (Monte Carlo) with
fitting residuals (inadequacy)

e The “flow distortion uncertainty”
=> 2% for the cup (no site cal, default IEC for 2.5D dist)

= 1% for the lidars: fair enough since measurements taken
close to the rotor (about 1D,.,)

16 DTU Wind Energy, Technical University of Denmark
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Power curve uncertainty assessment (274) -

cat. B wind speed uncertainty
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e The reduction of
combined wind speed
uncertainty is
“artificial” since due to
the different flow
distortion uncertainty
value

= need for finer
quantification of this
component in standards

1.2
Normalised hub height wind speed [-]

DTU Wind Energy, Technical University of Denmark

e Fitting residuals slightly
higher for ZDM than
5B-Demo explains the
difference



Power curve uncertainty assessment (374) --
cat. A power uncertainty

Lower scatter for the measured power curves with the
lidars = lower cat. A uncertainty on power output

i
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Power curve uncertainty assessment (374) --
combined power curve uncertainty (k=1)

i
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Take-aways -

>

e V. Is found! The solution: measurements close to rotor, within
the induction zone, at multiple distances, e.g. with nacelle lidars

e Wind Field Reconstruction algo. provide estimates comparable
classic mast instrumentation (< 1% difference)

e Power curves in flat terrain verified accurately, reduced scatter
(as usual with nacelle lidars)

= next generation of IEC61400-12-1 standards? (NWIP)
=>»some studies on PCurve uncertainty assessment desirable

e Further work :
—Adaptation and testing of the nacelle lidar short-range

measurement technique in complex terrain
= one campaign in HillOfTowie (UK), ZDM + 5B-Demo

= one campaign in Croatia, with a 4-beam Wind Iris)

20 DTU Wind Energy, Technical University of Denmark



Thanks for your
attention!

DTU Wind Energy
Department of Wind Energy
Ph.D. Thesls
Remotely measuring the wind
using furbine-mounted lidars

Application to power performance testing

Antoine Borraccino
DTU

A

Rise campus, Roskilde, 2017 -—

21 DTU Wind Energy, Technical University of Denmark

— _
| . . B

l y (
h__-r

More info:

= website www.unitte.dk
= contact borr@dtu.dk

= Or come to the defence!
(?in August?)
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AEP results

e |[EC -12-1 methodology

e extrapolated AEPs
e 0.5 m/s bin width

e Relative difference in % of cup-based AEP

e Rayleigh avg speed = 8 m/s

Lidar
measurements

@2D (5B-Demo)
@2.5 D ZDM) (case 1)

multiple distances

@ OO (case 2)

Avent 5-Beam

Wspeed difference: +0.59%

Wspeed difference: +0.52%

demonstrator lidar

-0.8%

-0.9%

Wspeed difference: +0.32%

Wspeed difference: -0.27%

Zephir Dual Mode
lidar

-0.3%

+0.5%

= AEP estimations as good with the “multi-distances” method as
with the 2.5D (<1.5% difference)
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A AEP [in % of cup]
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Model-based wind field reconstruction

e Doppler wind LiDaRs do not...

...measure wind speed, wind direction, shear, ...
see Hardesty, 1987 (wonderful description of lidar principles)

e They:
@ —only measure LOS velocities
—estimate/reconstruct wind field characteristics (WFC)

-

\ Lidar \:
| measurements !
wind model ,/\.
+ lidar model inclination  line-of-sight
+ initial WFC values angles velocities Vi
. wind m I
1 Fit to measurement d made
(iterative process)
e °| calculation : 2l
Simulation of simulated ; 2 fitted Wind field reconstructed
= of error . . .
measurement V WEFC estimation wind parameters
los update WFC
updated
WFC locations of interest
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Does this make it any easier?

Perdigéo.
credit: N. Vasiljevic

e In complex terrain:
—any “free stream” wind speed idea?
—site calibration? Maybe

26 DTU Wind Energy, Technical University of Denmark
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Does this make it any easier?

e In complex terrain:

—any “free stream” wind speed idea?

—site calibration? Maybe
e Offshore:

—mast expensive

—free wind may not be measurable due to wakes
27 DTU Wind Energy, Technical University of Denmark
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Power performance verification: “standard” 2.
procedure, what’s the problem?

N

Modern turbined 2.5D — 200-400m

28 DTU Wind Energy, Technical University of Denmark



A simple induction model

e Derived from the Biot-Savart law

—See The upstream flow of a wind turbine: blockage effect
—two parameters: induction factor a, free wind speed U,

o0

Ui=1—a(1+

§ - _ Xw
\/sz) with & = -

e \What does the induction looks like in NKE?

1.05

0.95

Free HWS adim [-]

0.9

0.85

0.4

29

I
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Adimensionned distance to rotor /D [-]

DTU Wind Energy, Technical University of Denmark

Black: theoretical, a = 0.3

Colored lines: different 10min
periods

=>Fitting a and U, should be
possible
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