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Nacelle-mounted lidars in WE: what for?

i

e Wind turbine control, incl. feed-forward (Schlipf D.)

e Wakes measurements (<>@ I
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e Power performance: (R. Wagner)
to replace met. masts when

—too expensive: offshore, complex sites
—insufficient: wind spd at hub vs. REWS

—free wind not measurable: decorrelation, no undisturbed
sectors (offshore array, complex site, etc)
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http://rave2012.iwes.fraunhofer.de/img/pdfs/Session5/5.1_Schlipf.pdf
http://orbit.dtu.dk/en/publications/uncertainty-of-power-curve-measurement-with-a-twobeam-nacellemounted-lidar(687d04db-ec72-461e-a2eb-5ab88ba20d0c).html

Unified Turbine Testing (UniTTe)

HE

e UniTTe: Unified Turbine Testing

—new methodology for power curve and loads assessment
based on lidar near-flow measurements, i.e. close to the

rotor, applicable in any type of terrain (radical change!)
—Dbasis for future standards (e.g. IEC 614100-12-1)

Numerical modelling of
turbine inflow: induction
‘transfer’ function

Measurement campaigns:
calibration + simple &
complex terrain
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Model-based wind field reconstruction

e Doppler wind LiDaRs do not...
...measure wind speed, wind direction, shear, ...
see Hardesty, 1987 (wonderful description of lidar principles)
e They:
—only measure LOS velocities
@ —estimate/reconstruct wind field characteristics (WFC)

Lidar
measurement

wind model measured

+ lidar model line-of-sight

+ initial WFC wind speeds

wind model
Fit to measurement
, . . Calculation of ) . .
Simulation of simulated error and fitted Wind field reconstructed
measurement ||r_1e—of—5|ght update WFC WEC evaluation wind
wind speeds
updated
WEC Xp, Yh, Zp coord.
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http://dx.doi.org/10.1175/1520-0426(1987)004%3C0191:LMOTEB%3E2.0.CO;2

Nagrrekaer Enge campaign (NKE), 7 months

i

 Two nacelle lidars:
Avent 5-beam (5B) in blue, ZephlIR Dual Mode (ZDM) in red

e |[EC compliant mast + SCADA + full loads
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Model-based wind field reconstruction

e Coordinate systems

LIDAR

S
INERTIAL

i

tilt, roll JI
- | |
+ translation T—

| HUB

Fitted wind param:

yaw misalignment,
inflow angle, etc

WIND

Courtesy of D. Schlipf
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Model-based wind field reconstruction

i

e Modelling the wind field

—choose a wind model that fits the application & site
characteristics

—the reconstruction should be performed either in the WIND
coordinate systems or in the HUB

e For power performance: static models
—i.e. no time dependency
—use 10-min averages of:
e LOS velocities
e inclinometers readings

—use knowledge of the trajectory (opening angles, ranges
config) and of lidar position
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Model-based wind field reconstruction

 \Wind models

i

Model

U

comment

Homogeneous 2D

Uy,=cst U =U

V,=0 oV, =V

WW=0 (—)W1=O

Does not depend on
X, Y, Z

Homogeneous 3D

Uy,=cst U =U

V,=0 oV, =V

W,=0 oW, =W

Does not depend on
X, Y, Z

e Assumption of flow homogeneity
= typically used by ground-based lidars (VAD, DBS) in flat

terrain

= not making much sense for lidars in nacelle mode
because of variations with heights a.g.l. (shear, veer, etc.)
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Model-based wind field reconstruction

 \Wind models

i

Model

U

comment

Homogeneous 2D

Uy,=cst U =U

V,=0 oV, =V

W,=0 oW, =0

Does not depend on
X, Y, Z

Homogeneous 3D

Uy,=cst U =U

V,=0 oV, =V

W,=0 oW, =W

Does not depend on
X, Y, Z

Inhomogeneous 2D
+ linear V shear

Uy = vo + 6y - Zw — Znup)

U =f(2

V,=0 oV, =V

WW=O (—)W1=0

Yaw misalignment
ay = cst

Inhomogeneous 2D
+ linear V shear

Uy = v + 6y - (Zw — Znup)

Ww=0 <V, =f(2)

Yaw misalignment

+ linear V veer cUi=7@) ay = f(2)
Inhomogeneous L (7w ex _ Yaw

2D + power law Uw ;vl‘;(_/;"(‘;’)) ’ V,=0 oV, =V Ww=0 <—>=W(; misalignment
shear = ay = cst

I—» fitted wind characteristics are:
o HWS v,
o yaw misalignment «aj (relative wind dir)
0 shear exponent a,,,
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Results: Inhomogeneous 2D with shear exp -

i

5B: use all 5 pts ZDM: use 4 pts in sguare

rot »

Free sector [110; 219]° ; @2.5 ; HWS estimated @hub

150 .

Z |m]

: o
100 0 7 X [m]
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Results: Inhomogeneous 2D with shear exp

Recon. HWS @235m $[m.s™'|$

5B: use all 5 pts

Free sector [110; 219]° ; @2.5 D, ;

y = 1.0509x — 0.3723 R? = 0.9842 /

= 1.0133x R? = 0.9829

1 1 1 L 1
2 4 6 8 10 12 14 16
Ref. HWS @80m agl $[m.s'1$
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Recon. HWS @235m $[m.s"'1$

ZDM: use 4 pts in square

HWS estimated @hub

rot »

18 T T T T T T T
y=1.0303x—0.1868 R? = 0.9736 .
16}
14+ ,,s
w

12} i :".'
10 - 3 _.":'{
8 ; e,
o o ..;' 5

ol = 1.0085x R? = 0.9731
4 . 5 8 10 12 14 16

Ref. HWS @80m agl $[m.s'I$
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Results: Inhomogeneous 2D with shear exp -

i

5B: use all 5 pts ZDM: use 4 pts in sguare

rot »

Free sector [110; 219]° ; @1.0 ; HWS estimated @hub

150 .

Z |m]

: o
100 0 7 X [m]
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Recon. HWS @95m $[m.s']$

Results: Inhomogeneous 2D with shear exp -

5B: use all 5 pts

Free sector [110; 219]° ; @1.0D

Recon. HWS @95m $[m.s™'|$

18 : , : ! 1 , .
y =0.9995x — 0.1818 R%? = 0.9857 N
16 - ~.
I "‘“?,a“
12} . '..‘
‘:a‘; 3.
10+ L h
8;
6 4
b
WL 4
= 0.9802x R? =0.9853
% s 6 8 10 12 14 16

Ref. HWS @80m agl $[m.s"'1$
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ZDM: use 4 pts in square

18

16 -

141

12

10+

rot »

- HWS estimated @hub

y =0.9937x — 0.1409 R? = 0.9872

. v
. et
.0t
“ 2
(3
’.."Tf <P
P
-, 7 "
.
.
.l
8%
.
27

/ = 0.9779x R? = 0.9869

| 1
4 6 8 10 12 14 16 18
Ref. HWS @80m agl $[m.s"$

less scatter, wind speed deficit of ~2% =» can we correct this?
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A simple induction model

e Derived from the Biot-Savart law

—See The upstream flow of a wind turbine: blockage effect

—two parameters: induction factor a, free wind speed U,

o0

Ui=1—a(1+

§ - _ Xw
\/sz) with & = -

e \What does the induction looks like in NKE?
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Black: theoretical, a = 0.3

Colored lines: different 10min
periods

=>Fitting a and U, should be
possible
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http://onlinelibrary.wiley.com/doi/10.1002/we.451/full

Model-based wind field reconstruction

o
=
==
 Wind models
Model name U V |74 comment
Homogeneous 2D U,=cst oU=U V,=0 oV, =V W,=0 »w,=0 | DP°°S ”;t $e§e”d on
Homogeneous 3D U,=cst oU =U V,=0 oV, =V w,=0 ow,=w | DS ”;t $e§end on
Inhomogeneous 2D Uy, =19+ 6y (zw — Zpyup) W,=0 oW, =0 Yaw misalignment
: V,=0 oV, =V
+ linear V shear o U =f(2) ay = cst

Inhomogeneous 2D T, = 5 2= G - (err — )
+ linear V shear w0 TV MW S Shubl =0 o V= f(2) W,=0 oW, =0

; U =f(2)
+ linear V veer

Yaw misalignment

ay = f(2)

Inhomogeneous 2D Uw = 0 (*Y/215) **P Yaw misalignment

+ power law shear o U =f(2) h=0 oV =V Wy =0 oW =0 ay = cst
Inhomogeneous 1D Biot-
2D Uy = fx,2) Vw=20 _ _

+ power law shear o U;=f(x2z2) oVi=f(xz) Wy=0 oW, =0 ) Savar_d for
+ induction model induction fct

I—» fitted wind characteristics are: free stream HWS U, , yaw
misalignment ay, shear exponent «a.,,, induction factor a.
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‘ o -
Results: ‘free’ wind speed based on near '
flow measurements

5B: use all 5 pts

ZDM: use 4 pts in square
+ 4 dist. (0.5 to 1.1D) + 3 dist. (0.3 to 1.2D)

e

vhere WFC
1 R . are evaluated

100 h —50
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Recon. HWS @[49 72 95 109]m $[m.s'1]$

Results: ‘free’ wind speed based on near

flow measurements

5B: use all 5 pts
+ 4 dist. (0.5 to 1.1D)

iE

ZDM: use 4 pts in square
+ 3 dist. (0.3 to 1.2D)

Free sector [110; 219]° ; HWS estimated @H,,,, & 2.5 D,

18 T T T T T T T
y =1.0068x — 0.0466 R* = 0.9869
16
14 L1
T R
12 “
10F [
8_
6F ..
e .-.é '
. R
47 -'..- .
=1.0019x R? = 0.9869
2 1 1 1 | 1
2 4 6 8 10 12 14 16
Ref. HWS @80m agl $/m.s"1$
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Recon. HWS @[30 95 120]m $[m.s‘1]$
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y =1.0019x — 0.0218 R? = 0.9871

= 0.9994x R? = 0.9871
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Induction factor?

Estimated as part of the outputs of the induction model
=» can even be considered a lidar-estimation of thrust coeff.
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Conclusions

» Model-based wind field reconstruction provides estimations of
wind characteristics comparable with classic anemometry

e Integrating an induction model is possible (same for wakes?)

e Combined with near-flow measurements, the method allows
robust estimation of ‘free stream’ wind

e Questions & further work:
1. How to adapt the models to complex terrain? Same?
2. Should the induction function be made 2-dimensional?

3. Quantify uncertainties on wind characteristics estimates
using calibrated LOS velocity measurements

e Preliminary power curves show reduced scatter and high
accuracy

19 DTU Wind Energy, Technical University of Denmark
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Thanks for your
attention!
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More Info:
= website www.unitte.dk

I
16

= contact borr@dtu.dk ek
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